

OUTLINE

- Introduction
- Review of Literature
- Purpose
- Methods
- Statistics
- Results
- Discussion
- Conclusions
- Future Implications
- References

Introduction-Diabetes

• Prevalence

- 29.1 million people affected in 2012¹
- 90-95% of cases were type 2 diabetes¹

Demographics

• 13.1% of African Americans vs. 7.6% of non-Hispanic white individuals¹

Introduction-Diabetes

- Complications
 - 2-4x higher death rate from heart disease¹
- Causes
 - Postprandial hyperglycemia has been shown to have an atherogenic effect correlating with CVD mortality²

INTRODUCTION-DIETARY INTAKE

- Distribution of calorie and food intake affects postprandial blood glucose response^{3,4,5}
 - Fewer eating events results in higher calorie and grams of carbohydrate at each eating event
- Insulin sensitivity decreases throughout the day
 - Carbohydrate at the "dinner meal" resulted in 8, 9, 12
 - Higher mean glucose
 - Higher peak blood glucose
 - Carbohydrate may be better tolerated when administered at the "lunch meal" ^{9, 12, 13}

³Beebe, C. A., Pastors, J. G., Powers, M. A., & Wylie-Rosett, J. (1991). Nutrition management for individuals with noninsulin-dependent diabetes mellitus in the 1990s: A review by the diabetes care and education dietetic practice group. Journal of the American Dietetic Association, 91(2), 196-202+205-207.

⁴Bertelsen, J., Christiansen, C., Thomsen, C., Poulsen, P. L., Vestergaard, S., Steinov, A., . . . Hermansen, K. (1993). Effect of meal frequency on blood glucose, insulin, and free fatty acids in NIDDM subjects. Diabetes Care, 16(1), 4-7.

⁵Jenkins, D. J. A., Ocana, A., Jenkins, A. L., Wolever, T. M. S., Vuksan, V., Katzman, L., Josse, R. G. (1992). Metabolic advantages of spreading the nutrient load: Effects of increased meal frequency in non-insulin-dependent diabetes. American Journal of Clinical Nutrition, 55(2), 461-467

⁶Reutrakul, S. Hood, M. Crowley, S. Morgan, M. Teodori, M. Knutson, K. Cauter, E. (2013). Chronotype is independently associated with glycemic control in type 2 diabetes. American Diabetes Association. 36(9): 2523-2529.

Reutrakul, S, Hood, M, Crowley, J. The relationship between breakfast skipping, chronotype and glycemic control in type 2 diabetes. Informa healthcare. 1-8 (2013)

INTRODUCTION-DIETARY INTAKE

- Dietary intake pattern
 - No set recommendation to promote optimal blood glucose
- Patterns resulting in poor glycemic control ^{6,7}
 - Larger percent of kilocalories at dinner
 - Skipping breakfast

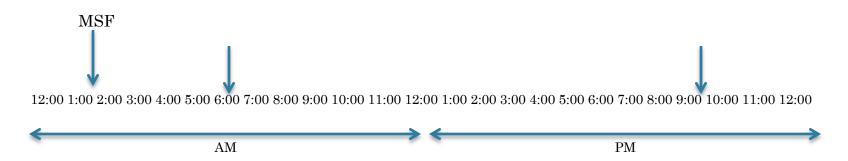
³Beebe, C. A., Pastors, J. G., Powers, M. A., & Wylie-Rosett, J. (1991). Nutrition management for individuals with noninsulin-dependent diabetes mellitus in the 1990s: A review by the diabetes care and education dietetic practice group. Journal of the American Dietetic Association, 91(2), 196-202+205-207.

⁴Bertelsen, J., Christiansen, C., Thomsen, C., Poulsen, P. L., Vestergaard, S., Steinov, A., . . . Hermansen, K. (1993). Effect of meal frequency on blood glucose, insulin, and free fatty acids in NIDDM subjects. Diabetes Care, 16(1), 4-7.

⁵Jenkins, D. J. A., Ocana, A., Jenkins, A. L., Wolever, T. M. S., Vuksan, V., Katzman, L., Josse, R. G. (1992). Metabolic advantages of spreading the nutrient load: Effects of increased meal frequency in non-insulin-dependent diabetes. American Journal of Clinical Nutrition, 55(2), 461-467

⁶Reutrakul, S. Hood, M. Crowley, S. Morgan, M. Teodori, M. Knutson, K. Cauter, E. (2013). Chronotype is independently associated with glycemic control in type 2 diabetes. American Diabetes Association. 36(9): 2523-2529.

Reutrakul, S, Hood, M, Crowley, J. The relationship between breakfast skipping, chronotype and glycemic control in type 2 diabetes. Informa healthcare. 1-8 (2013)


DIETARY INTAKE PATTERNS

- •Reutrakul et al.^{6,7}
 - •Larger percent of kilocalories at dinner
 - •Skipping breakfast
- •Subjects
 - •Adults with type 2 diabetes
 - •Followed in endocrinology or primary care clinics at RUMC
- •Measures
 - •Demographic: Age, race, weight, height, current medications
 - •Laboratory: HbA1c (primary outcome variable)
 - •Intake: 24 hour dietary recall (one)
 - •Sleeping habits: mid-sleep time on free days (MSF)

^{6.} Reutrakul, S. Hood, M. Crowley, S. Morgan, M. Teodori, M. Knutson, K. Cauter, E. (2013). Chronotype is independently associated with glycemic control in type 2 diabetes. American Diabetes Association. 36(9): 2523-2529.

^{7.} Reutrakul, S, Hood, M, Crowley, J. The relationship between breakfast skipping, chronotype and glycemic control in type 2 diabetes. Informa healthcare. 1-8 (2013)

Mid-sleep time on free days (MSF)

Mid-sleep time on free days (MSF)

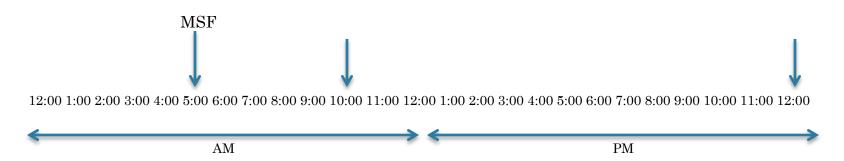


Table 2. Pearson correlation (r) between demographics and circadian, sleep, and dietary parameters and natural log of HbA_{1c} (n=194)

	_	_
	R	Р
Age (years)	-0.25	<0.001
BMI (kg/m²)	0.09	0.19
CES-D (depression) score	0.20	0.005
Circadian parameters		
Chronotype (MSF)	0.34	<0.001
Sleep parameters		
Sleep duration (h)	-0.01	0.90
Perceived sleep debt (h)	0.15	0.04
PSQI score	0.09	0.22
Dietary parameters		
Breakfast calories (% of daily total)	-0.11	0.13
Dinner calories (% of daily total)	0.26	< 0.001
Breakfast time	0.13	0.13
Dinnertime	0.11	0.14

^{6.} Reutrakul, S., Hood, M., Crowley, S., Morgan, M., Teodori, M., Knutson, K., Cauter, E. (2013) Chronotype is Independently Associated with Glycemic Control in Type 2 Diabetes. Diabetes Care 36(9) 1-7.

Table 3. Hierarchical regression analysis with natural log of HbA_{1c} as the outcome (n=194)		
Variable	В	P
Age	-0.003	0.003
Sex (reference: male)	0.016	0.598
Race (reference: nonwhite)	-0.028	0.360
BMI	-0.001	0.526
DM complications	0.031	0.298
Insulin use	0.126	<0.001
CES-D	0.0001	0.957
Perceived sleep debt	-0.002	0.796
Chronotype (MSF)	0.025	0.001
Adjusted R ²	0.24	
$\Delta m R^2$	0.043	0.001

^{6.} Reutrakul, S., Hood, M., Crowley, S., Morgan, M., Teodori, M., Knutson, K., Cauter, E. (2013) Chronotype is Independently Associated with Glycemic Control in Type 2 Diabetes. Diabetes Care 36(9) 1-7.

Table 4. Multiple regression	analysis predicting	natural log of HbA1c (n=194)
------------------------------	---------------------	------------------------------

	Mod	del 1	M	odel 2
Variable	В	P	В	P
Age	-0.003	0.002	-0.003	0.009
Sex (reference: male)	0.013	0.655	0.015	0.610
Race (reference: nonwhite)	-0.019	0.528	-0.024	0.423
BMI	-0.001	0.714	-0.001	0.466
Number of DM complications	0.038	0.196	0.031	0.299
Insulin use	0.137	<0.001	0.144	<0.001
CES-D	0.0001	0.936	0.0004	0.786
Perceived sleep debt	0.001	0.849	-0.0001	0.994
Percentage of daily caloric intake at dinner	0.0018	0.005	0.0014	0.038
Breakfast skipping			0.108	0.012
Adjusted R ²	0.23		0.25	
$\Delta \mathrm{R}^2$			0.03	0.012
		-		

^{7.} Reutrakul, S, Hood, M, Crowley, J. The relationship between breakfast skipping, chronotype and glycemic control in type 2 diabetes. Informa healthcare. 1-8 (2013)

PURPOSE

- 1. To describe the dietary intake pattern of subjects with type 2 diabetes.
- 2. To describe meal skipping behavior between two 24-hour dietary recalls.
- 3. To determine the association between dietary intake pattern and HbA1c.
- 4. To determine the association between meal skipping behavior and HbA1c.

RESEARCH DESIGN

- Cross-sectional, observational design
- Baseline data from the Lifestyle Improvement through Food and Exercise (LIFE) trial
 - Randomized controlled trial
 - Low-income African Americans with type 2 diabetes mellitus
- Dietary intake
 - Two 24-hour dietary recalls

SETTING AND SAMPLE

211 subjects (6 cohorts)

Cohort	Clinic	Date
C1	Austin Health Center	Spring 2012
C2	Austin Health Center	Summer 2012
C3	Englewood Health Center	Winter 2012
C4	Woodlawn Health Center	Summer 2013
C5	Near South	Fall 2013
C6	Oak Forest Health Center	Spring 2014

RECRUITMENT

Potential subjects screened from the patient database of John H. Stroger, Jr. Hospital and associated clinics within Cook County

List of subjects sent to principal investigator

Subjects approached in clinic or via phone

INCLUSION CRITERIA

- Self declared African American descent
- >18 years old
- Type 2 diabetes with hemoglobin A1c≥7%
- Patient of Cook County Hospital
- Clearance by a primary care physician
- Ability to engage in moderate level of physical activity

EXCLUSION CRITERIA

- Body mass index (BMI) ≤ 18.5 and ≥ 55
- HbA1c < 7%
- <18 years of age
- Non-Cook County clinic
- Didn't visit a medical clinic annually
- Diet-controlled diabetes
- Major psychiatric disorder
- Cognitive impairment
- Taking prednisone or steroids
- Illicit drug use or alcohol abuse

- Unable to give informed consent
- Could not engage in physical activity
- No access to a telephone
- Restrictive vision problems
- Sickle cell trait
- End-stage renal disease
- Stroke with paresis
- Congestive heart failure
- Comorbidity that limits lifespan <4 years

BASELINE DATA

<u>Day 1</u>	<u>Day 2</u>
24 hour recall	24 hour recall
Distributed accelerometers	Collected accelerometers
Administered questionnaires	

MEASURES & INSTRUMENTS

Measures	Instrument
Demographic characteristics	LIFE general participant form
Clinical and physical measures	LIFE physical measures form
Medical history	LIFE medical history form
Psychosocial measures	9-item Patient Health Questionnaire (PHQ-9)
Physical activity	Accelerometer
Nutrient intake	Multiple Pass Method, Nutrition Data System for Research (NDSR)

DIETARY INTAKE DATA

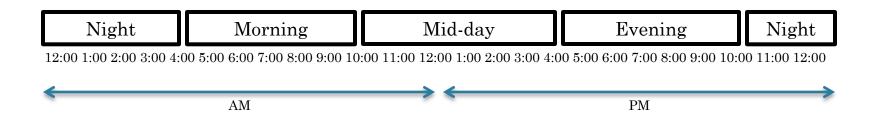
Data collection

15.

- The Multiple Pass Method¹⁴
- o Nutrition Data System for Research¹⁵
 - Developed by the Nutrition Coordinating Center (NCC) University of Minnesota, (Minneapolis, MN)
 - NDSR software version 2011-2014

^{14.} Blanton, C. Moshfegh, A. Baer, D. Kretsch, M. The USDA Automated Multiple-Pass Method Accurately Estimates Group Energy and Nutrient Intake. *The Journal of Nutrition*. 136(10): 2594-2599.

Shackel SF. Buzzard IM, Gebhardt SE. Procedures for estimating nutrient values for food composition databases. J Food Comp and Anal. 1997; 10:102-114.

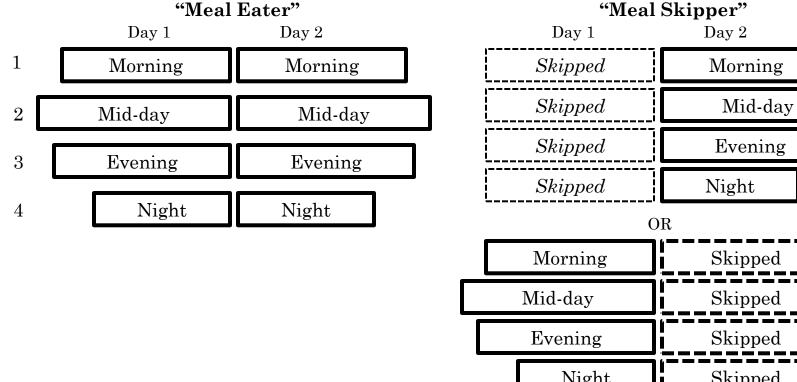

NDSR-EXTRACTED VARIABLES

Variables	
Meal (as stated by subject)	Meal time (24 clock time)
Total Grams (g)	Energy (kcals)
Total Fat (g)	% Calories from Fat (%)
Total Carbohydrate (g)	% Calories from Carbohydrate (%)
Total Protein (g)	% Calories from Protein (%)

^{14.} Blanton, C. Moshfegh, A. Baer, D. Kretsch, M. The USDA Automated Multiple-Pass Method Accurately Estimates Group Energy and Nutrient Intake. The Journal of Nutrition. 136(10): 2594-2599.

^{15.} Shackel SF. Buzzard IM, Gebhardt SE. Procedures for estimating nutrient values for food composition databases. J Food Comp and Anal. 1997; 10:102-114.

MEAL TIME (24-HOUR CLOCK)



- 1. Time period #1; Morning (4:00am-9:59am)
- 2. Time period #2; Mid-day (10:00am-15:59pm)
- 3. Time period #3; Evening (16:00-21:59pm)
- 4. Time period #4; Night (22:00pm-3:59am)

DIETARY INTAKE PATTERN

	Day 1			
1	Morning	Mid-day	Evening	Night = total
2		Mid-day	Evening	Night = total
3	Morning		Evening	Night = total
4	Morning	Mid-day		Night = total
5	Morning	Mid-day	Evening	= total
6		Mid-day	Evening	= total
7	Morning		Evening	= total
8	Morning	Mid-day		= total
9		Mid-day		= total

MEAL SKIPPING BEHAVIOR

- 1. Time period #1; Morning (4:00am-9:59am)
- 2. Time period #2; Mid-day (10:00am-15:59pm)
- 3. Time period #3; Evening (16:00-21:59pm)
- 4. Time period #4; Night (22:00pm-3:59am)

Evening	Skipped
Night	Skipped
	OR
Skipped	Skipped

STATISTICS

- Description of variables
 - Categorical: Frequency (%)
 - Continuous: Median (IQR)
- Primary outcome variable (HbA1c)
 - Log transformed for normality
- Dietary intake data
 - Intake: Averaged between days
 - Pattern: Described during day one
 - Meal skipping behavior: Described between two days of 24-hour dietary recall

STATISTICS

- Multiple regression analysis
 - Regressions run between demographic, intake, pattern data + HbA1c
 - p<0.2 to determine significance for regression
 - Significant variables selected for backward stepwise regression
 - p<0.05 to determine significance

RESULTS

Table 1. Demographic Characteristics of Life Participants

Categorical Variables	Total Sample (n=211)
	n (%)
Gender	
Male	63 (30)
Female	148 (70)
Education	
≤High School	97 (46)
>High School	114 (54)
Relationship status	
Single	161 (76)
Living with Partner	50 (24)
Income	
<\$30,000	151 (84)
≥\$30,000	29 (16)
Employment	
Employed	62 (30)
Unemployed	147 (70)
Smoker	
Yes	47 (22)
No	164 (78)
Diabetes education	
Yes	101 (48)
No	110 (52)
Medications	
None/Pills	115 (54)
Pills/Insulin	96 (45)
Moderate – vigorous activity (min)	
, , ,	108 (51.2)
	103 (48.8)
	· ´ ´

RESULTS

Table 1. Demographic Characteristics of Life Participants Continued

Demographic Variables	graphic Variables Total Sample (n=211)		
	Median	IQR	
Hemoglobin A1c (%)	8.50	7.80, 9.80	
Age (years)	56.0	50.0, 62.0	
Poverty income ratio (PIR)	1.09	0.65, 1.62	
Weight (kg)	95.7	83.5, 112.0	
Body mass index (kg/m²)	34.9	29.3, 39.9	
Waist circumference (inches)	44.1	40.2, 47.6	
Systolic blood pressure (mm Hg)	130.5	120.5, 143.5	
Diastolic blood pressure (mm Hg)	81.0	74.0, 87.0	
Number of comorbidities ¹	1.0	1.0, 2.0	
Length of diabetes (years)	9.4	4.6, 15.3	
Medication adherence (MMSA8)	6.0	3.0, 7.0	
PHQ9 (Depression scale)	5.0	1.0, 9.0	

¹Comorbidities tallied; heart attack, heart failure, hypertension, stroke, renal insufficiency, retinopathy, and self-reported hypoglycemia (rate of 4-6 times per month)

Percent of kilocalories by time period

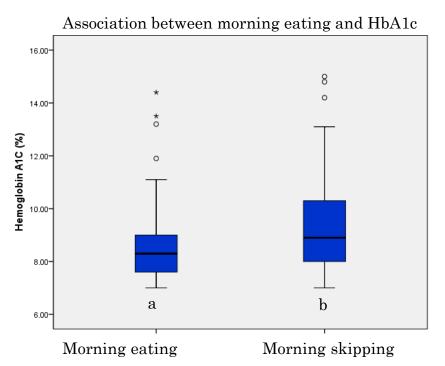
 Avg % calories/morning
 Median (IQR)

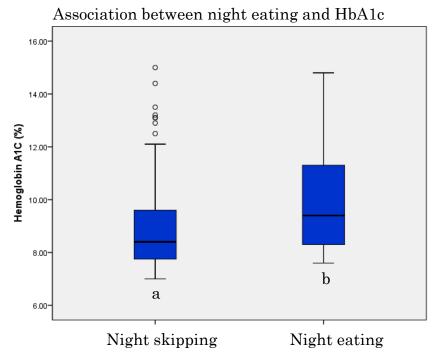
 Avg % calories/morning
 15.08 (0.14, 26.03)^a

 Avg % calories/mid-day
 35.94 (24.45, 46.33)^b

 Avg % calories/evening
 40.88 (30.67, 50.50)^c

 Avg % calories/night
 0 (0, 9.66)^a


DIETARY INTAKE PATTERN


	Day 1				
1	Morning	Mid-day	Evening	Night	= 48 (23%)
2		Mid-day	Evening	Night	= 25 (12%)
3	Morning		Evening	Night	= 1 (0.5%)
4	Morning	Mid-day		Night	=2 (1%)
5	Morning	Mid-day	Evening		= 92 (44%)
6		Mid-day	Evening		= 39 (18%)
7	Morning		Evening		= 2 (1%)
8	Morning	Mid-day			= 1 (0.5%)
9		Mid-day			= 1 (0.5%)

DIETARY INTAKE PATTERN

	Median (IQR)	Sig.
Pattern 1: Overnight Eaters (n=76)	8.9(8.1,10.1) ^b	0.016
Pattern 2: Daytime Eaters (n=135)	8.3(7.6,9.6) ^a	

DIETARY PATTERN AND A1C

	Median (IQR)	
Morning (Time period #1)		0.002
Morning skippers	8.9 (8.0, 10.3) ^a	
Morning eater	8.3 (7.6, 9.0) ^b	
Night (Time period #4)		0.008
Night skipper	8.4 (7.7, 9.6) ^a	
Night eater	9.4 (8.3, 11.3) ^b	

Table 7. Dietary intake parameters by meal skipping behavior

Diet Characteristics	Breakfast eaters¹ (n=94)	Breakfast skippers ² (n=116)	${f Sig^3}$				
	Median (IQR)						
Kilocalories	1764.0 (1443.8, 2264.1) ^a	1725.4 (1262.9, 2227.2) ^a	0.266				
Carbohydrate (grams)	200.6 (159.3, 264.5) ^a	184.1 (142.7, 244.4) ^a	0.152				
Percent kcal fat (%)	38.3 (32.5, 41.1) ^a	37.4 (32.0, 43.1) ^a	0.636				
Percent kcal CHO (%)	45.0 (40.4, 52.0) ^a	45.3 (38.6, 50.7) ^a	0.519				
Percent kcal protein (%)	17.0 (14.0, 19.6) ^a	17.0 (14.1, 19.7) ^a	0.931				
Diet Characteristics	Nighttime eaters ⁴ (n=26)	Nighttime skippers ⁵ (n=184)	${f Sig^3}$				
	Median (IQR)						
Kilocalories	1827.6 (1445.1, 2486.9) ^a	1724.2 (1329.6, 2182.8) ^a	0.163				
Carbohydrate (grams)	213.4 (156.9, 256.9) ^a	189.7 (147.2, 255.9) ^a	0.506				
Percent kcal fat (%)	40.5 (32.3, 43.6) ^a	37.4 (32.0, 41.8) ^a	0.171				
Percent kcal CHO (%)	43.2 (36.9, 50.0) ^a	45.6 (39.8, 51.6) ^a	0.133				
Percent kcal protein (%)	17.4 (14.6, 19.7) ^a	16.8 (13.7, 19.6) ^a	0.629				

¹Breakfast eaters consumed food during time period #1 (4:00am-9:59am) on both days

 $^{^2}Breakfast\ skippers\ did\ not\ consume\ food\ during\ time\ period\ \#1\ (4:00am-9:59am)\ on\ either\ one\ or\ both\ days$

 $^{^3}$ Mann-Whitney U tests performed between dietary patterns with significance at p<0.05 $\,$

⁴Nighttime eaters consumed food during time period #4 (22:00pm-3:59am) on both days

⁵Nighttime skippers did not consume food during time period #4 (22:00 pm-3:59 pm) on one or both days

Table 2. Association and differences by demographic variables influencing A1c

Demographic Variables	$ m A1c^{1}$	Beta	${f Sig^3}$
Median(IQR)			
Gender ⁴		-	0.006
→ Male	9.2(8.0, 10.7) ^a		
Female	8.3(7.6, 9.6) ^b		
Relationship status ⁴		-	
	8.3(7.8, 9.6) ^a		0.005
Living with Partner	9.2(8.1, 10.7) ^b		
Employment ⁴		-	
_ · ·	8.9(7.9, 11.1) ^a		0.081
	8.4(7.8, 9.6) ^a		
Medications ⁴		-	
	$8.3(7.5, 9.5)^a$		0.007
	$9.0(8.0, 10.7)^{b}$		
Age (years) ⁵	-	-0.302	< 0.001
Weight (kg) ⁵	-	-0.136	0.048
Body mass index (kg/m²) ⁵	-	-0.158	0.022
Diastolic blood pressure (mm Hg) ⁵	-	0.180	0.009
Number of comorbidities ^{5,6}	-	0.127	0.066
Medication adherence (MMSA8) ⁵	-	-0.185	0.007

¹Log transformations were performed on HbA1c values in order to normalize the distribution

²Unstandardized B

 $^{^{\}rm 3}$ p<0.2 was used to determine significance for regression

⁴ Mann-Whitney U tests performed between categorical variables of interest and log transformed hemoglobin A1c

 $^{^5\}mathrm{Regressions}$ were run between log transformed HbA1c and continuous variables of interest

⁶ Comorbidities tallied; heart attack, heart failure, hypertension, stroke, renal insufficiency, retinopathy, and self-reported hypoglycemia (rate of 4-6 times per month)

Table 3. Daytime versus overnight dietary patterns: backward stepwise regression analysis predicting A1c¹ in subjects with type 2 diabetes (n=211)

Variable ²	Beta	P value
Constant		
$ m Gender^3$	0.119	0.057
Age	-0.241	0.001
Relationship status ⁴	0.148	0.017
Diastolic blood pressure (mm Hg)	0.128	0.053
BMI (kg/m²)	-0.233	<0.001
Type of medication ⁵	0.174	0.006
Medication adherence	-0.168	0.007
Percent kilocalories from fat (%)	0.117	0.063
F R ² , %	9 313 0.272	<0.001

¹A1c was log-transformed for analyses

²Variables entered into regression analysis include: Gender, Age, Relationship status, Employment status, Diastolic blood pressure, BMI (kg/m²), Number of comorbidities, Type of medication, Medication adherence, Percent kilocalories from fat (%), and dietary intake pattern (daytime eaters vs. nighttime eaters)

³ "Gender" was coded as 0 female and 1 male

 $^{^4\,\}mathrm{``Relationship\ Status''}$ was coded as 0 single and 1 living with a partner

 $^{^{5}}$ "Type of Medication" was coded as 0 none/pills and 1 insulin

Table 4. Morning skipping behavior: backward stepwise regression analysis predicting A1c¹ in subjects with type 2 diabetes (n=211)

$ m Variable^2$	Beta	P value
Constant		
$ m Gender^3$	0.114	0.067
Age	-0.230	0.001
Relationship status ⁴	0.149	0.016
Diastolic blood pressure (mm Hg)	0.123	0.061
BMI (kg/m²)	-0.228	< 0.001
Type of medication ⁵	0.162	0.010
Medication adherence	-0.154	0.014
Percent kilocalories from fat (%)	0.113	0.069
Morning skipping ⁶	0.125	0.043
F	8.870	< 0.001
R ² , %	0.287	

¹A1c was log-transformed for analyses

²Variables entered into regression analysis include: Gender, Age, Relationship status, Employment status, Diastolic blood pressure, BMI (kg/m²), Number of comorbidities, Type of medication, Medication adherence, Percent kilocalories from fat (%), Breakfast skipping (one/both)

 $^{^{\}rm 3}$ "Gender" was coded as 0 female and 1 male

 $^{^{\}rm 4}\,{\rm ``Relationship\ Status''}$ was coded as 0 single and 1 living with a partner

⁵ "Type of Medication" was coded as 0 none/pills and 1 insulin

⁶ "Breakfast skipping" was coded as 0 ate breakfast both days and 1 skipped breakfast one/both days

Table 5. Night eater vs. night skipper: backward stepwise regression analysis predicting A1c¹ in subjects with type 2 diabetes (n=211)

$ m Variable^2$	Beta	P value	
Constant			
$Gender^3$	0.142	0.022	
Age	0.290	< 0.001	
Relationship Status ⁴	0.147	0.018	
BMI (kg/m²)	-0.201	0.002	
Type of medication ⁵	0.148	0.017	
Medication adherence	-0.164	0.009	
Night eating ⁶	0.144	0.020	
F	10.408	< 0.001	
R^{2} , %	0.267		

¹A1c was log-transformed for analyses

²Variables entered into regression analysis include: Gender, Age, Relationship status, Employment status, Diastolic blood pressure, BMI (kg/m²), Number of comorbidities, Type of medication, Medication adherence, Percent kilocalories from fat (%), Total kilocalories, Breakfast skipping (both), Breakfast skipping (none), Night time skipping (one), Night time skipping (neither)

 $^{^{\}scriptscriptstyle 3}$ "Gender" was coded as 0 female and 1 male

⁴ "Relationship Status" was coded as 0 single and 1 living with a partner

 $^{^{5}}$ "Type of Medication" was coded as 0 none/pills and 1 insulin

^{6 &}quot;Nighttime eating" was coded as 0 did not eat overnight one/both days and 1 ate overnight both days

DISCUSSION

- A higher A1c was associated with being
 - Younger^{16,17}
 - Being on insulin^{18,19,20}
 - Lower medication adherence²¹
 - Higher percent of kilocalorie intake from fat²²

- 16. Carter JS, Gilliland SS, Perez GE, Skipper B, Gilliland FD. Public health and clinical implications of high hemoglobin A1c levels and weight in younger adult Native American people with diabetes. Arch Intern Med. 2000;160(22):3471-3476 Shackel SF. Buzzard IM, Gebhardt SE. Procedures for estimating nutrient values for food composition databases. J Food Comp and Anal. 1997; 10:102-114.
- 17. Goudswaard AN, Stolk RP, Zuithoff P, Rutten GE. Patient characteristics do not predict poor glycaemic control in type 2 diabetes patients treated in primary care. Eur J Epidemiol. 2004;19(6):541-545
- 18. Chiu CJ, Wray LA. Factors predicting glycemic control in middle-aged and older adults with type 2 diabetes. *Prev Chronic Dis.* 2010;7(1):A08. Available from: http://www.cdc.gov/pcd/issues/2010/jan/08_0250. htm. Accessed January 3, 2013
- 19. Miller SA, Mancuso CA, Boutin-Foster C, Michelen W, McLean-Long C, Foote B, Charlson ME. Associations between posttraumatic stress disorder and hemoglobin A1c in low-income minority patients with diabetes. *Gen Hosp Psychiatry*. 2011;33(2):116-122
- 20. Wagner JA, Abbott GL, Heapy A, Yong L. Depressive symptoms and diabetes control in African Americans. J Immigr Minor Health. 2009;11(1):66-70
- 21. Guenther PM, Kirkpatrick SI, Reedy J, Krebs-Smith SM, Buckman DW, Dodd KW, Casavale KO, Carroll RJ. The Healthy Eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 Dietary Guidelines for Americans. J Nutr. 2014;144(3):399-407
- 22. Xu J, Eilat-Adar S, Loria CM, Howard BV, Fabsitz RR, Begum M, Zephier EM, Lee ET. Macronutrient intake and glycemic control in a population-based sample of American Indians with diabetes: the Strong Heart Study. Am J Clin Nutr. 2007;86(2):480-487

DISCUSSION

- A higher A1c was associated with being
 - Male^{23,24,25}
 - Living with a partner²⁶
 - Lower BMI²⁷
 - Higher diastolic blood pressure^{26,28}

- 23. Goudswaard AN, Stolk RP, Zuithoff P, Rutten GE. Patient characteristics do not predict poor glycaemic control in type 2 diabetes patients treated in primary care. *Eur J Epidemiol.* 2004;19(6):541-545
- 24. Quandt SA, Bell RA, Snively BM, Smith SL, Stafford JM, Wetmore LK, Arcury TA. Ethnic disparities in glycemic control among rural older adults with type 2 diabetes. *Ethn Dis.* 2005;15(4):656-663
- 25. Aikens JE, Perkins DW, Piette JD, Lipton B. Association between depression and concurrent type 2 diabetes outcomes varies by diabetes regimen. *Diabetic Med.* 2008;25(11):1324-1329.
- 26. Adler Al, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 2000;**321**:412–419
- 27. Ali, M, Bullard, K. Characteristics associated with poor glycemic control among adults with diabetes- National Health and Nutrition Examination Survey, United States 2007-2010. Centers for Disease Control. June 15 2012. 61(02);32-37
- 28. Guerci B, Böhme P, Kearney-Schwartz A, Zannad F, Drouin P. Endothelial dysfunction and type 2 diabetes. Part 2: altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes Metab 2001;27:436–447

DISCUSSION

- Morning skipping pattern accounted for 29% of the variance in A1c
- Night eating pattern accounted for 27% of the variance in A1c

^{6.} Reutrakul, S. Hood, M. Crowley, S. Morgan, M. Teodori, M. Knutson, K. Cauter, E. (2013). Chronotype is independently associated with glycemic control in type 2 diabetes. American Diabetes Association. 36(9): 2523-2529.

^{7.} Reutrakul, S, Hood, M, Crowley, J. The relationship between breakfast skipping, chronotype and glycemic control in type 2 diabetes. Informa healthcare. 1-8 (2013)

CONCLUSION

- Factors affecting glycemic control
 - Time of meal ingestion
 - Meal skipping behavior
- More research is needed to tease out the different mechanisms behind time of meal ingestion and glycemic control

STRENGTHS & LIMITATIONS

Strengths

- Timing of meals to summarize dietary intake patterns
- Two 24-hour dietary recalls
 - Meal skipping behavior between days
 - Done face to face
- Multiple pass method (midnight midnight)

Limitations

- Two 24-hour dietary recalls
 - Meal skipping behavior between days
- No sleep data
- Subjects with
 - Poor glycemic control
 - Limited physical activity
 - Lack of variability of calories at different meals

FUTURE IMPLICATIONS

• Research

- Timing of meals to describe dietary intake patterns
 - Include sleep data to determine time periods
 - Tighter time periods to explore effects of "snacking" on dietary intake
 - Consistent intake described by meal skipping behavior

• Practice

• Encourage patients to consume food during the morning and to avoid late night eating

QUESTIONS?

REFERENCES

- American Diabetes Association (2011). Data from the 2011 National Diabetes Fact Sheet. American Diabetes Association. Jan. 26, 2011
- American Diabetes Association (2001). Postprandial Blood Glucose. Diabetes Care. 24 (4). 775-778
- Beebe, C. A., Pastors, J. G., Powers, M. A., & Wylie-Rosett, J. (1991). Nutrition management for individuals with noninsulin-dependent diabetes mellitus in the 1990s: A review by the diabetes care and education dietetic practice group. Journal of the American Dietetic Association, 91(2), 196-202+205-207.
- Bertelsen, J., Christiansen, C., Thomsen, C., Poulsen, P. L., Vestergaard, S., Steinov, A., . . . Hermansen, K. (1993). Effect of meal frequency on blood glucose, insulin, and free fatty acids in NIDDM subjects. Diabetes Care, 16(1), 4-7.
- Jenkins, D. J. A., Ocana, A., Jenkins, A. L., Wolever, T. M. S., Vuksan, V., Katzman, L., Josse, R. G. (1992). Metabolic advantages of spreading the nutrient load: Effects of increased meal frequency in non-insulin-dependent diabetes. American Journal of Clinical Nutrition, 55(2), 461-467.
- Reutrakul, S. Hood, M. Crowley, S. Morgan, M. Teodori, M. Knutson, K. Cauter, E. (2013). Chronotype is independently associated with glycemic control in type 2 diabetes. American Diabetes Association. 36(9): 2523-2529.
- 7. Reutrakul, S, Hood, M, Crowley, J. The relationship between breakfast skipping, chronotype and glycemic control in type 2 diabetes. Informa healthcare. 1-8 (2013).
- 8. Schade, D. S., Eaton, R. P., Mitchell, W., & Ortega, T. (1980). Glucose and insulin response to high carbohydrate meals in normal and maturity-onset diabetic subjects. Diabetes Care, 3(2), 242-244.
- 9. Beebe, C. A., Pastors, J. G., Powers, M. A., & Wylie-Rosett, J. (1991). Nutrition management for individuals with noninsulin-dependent diabetes mellitus in the 1990s: A review by the diabetes care and education dietetic practice group. Journal of the American Dietetic Association, 91(2), 196-202+205-207.
- Jenkins, D. J. A., Ocana, A., Jenkins, A. L., Wolever, T. M. S., Vuksan, V., Katzman, L., Josse, R. G. (1992). Metabolic advantages of spreading the nutrient load: Effects of increased meal frequency in non-insulin-dependent diabetes. American Journal of Clinical Nutrition, 55(2), 461-467.
- Bertelsen, J., Christiansen, C., Thomsen, C., Poulsen, P. L., Vestergaard, S., Steinov, A., . . . Hermansen, K. (1993). Effect of meal frequency on blood glucose, insulin, and free fatty acids in NIDDM subjects. Diabetes Care, 16(1), 4-7.
- Pearce, K. L., Noakes, M., Keogh, J., & Clifton, P. M. (2008). Effect of carbohydrate distribution on postprandial glucose peaks with the use of continuous glucose monitoring in type 2 diabetes. American Journal of Clinical Nutrition, 87(3), 638-644.
- Powers, M. A., Cuddihy, R. M., Wesley, D., & Morgan, B. (2010). Continuous glucose monitoring reveals different glycemic responses of moderate- vs high-carbohydrate lunch meals in people with type 2 diabetes. Journal of the American Dietetic Association, 110(12), 1912-1915.
- Blanton, C. Moshfegh, A. Baer, D. Kretsch, M. The USDA Automated Multiple-Pass Method Accurately Estimates Group Energy and Nutrient Intake. *The Journal of Nutrition*. 136(10): 2594-2599.
- Shackel SF. Buzzard IM, Gebhardt SE. Procedures for estimating nutrient values for food composition databases. J Food Comp and Anal. 1997; 10:102-114.

REFERENCES

- 16. Carter JS, Gilliland SS, Perez GE, Skipper B, Gilliland FD. Public health and clinical implications of high hemoglobin A1c levels and weight in younger adult Native American people with diabetes. *Arch Intern Med*. 2000;160(22):3471-3476 Shackel SF. Buzzard IM, Gebhardt SE. Procedures for estimating nutrient values for food composition databases. J Food Comp and Anal. 1997; 10:102-114.
- Goudswaard AN, Stolk RP, Zuithoff P, Rutten GE. Patient characteristics do not predict poor glycaemic control in type 2 diabetes patients treated in primary care. Eur J Epidemiol. 2004;19(6):541-545
- Chiu CJ, Wray LA. Factors predicting glycemic control in middle-aged and older adults with type 2 diabetes. *Prev Chronic Dis.* 2010;7(1):A08. Available from: http://www.cdc.gov/pcd/issues/2010/jan/08_0250. htm. Accessed January 3, 2013
- Miller SA, Mancuso CA, Boutin-Foster C, Michelen W, McLean-Long C, Foote B, Charlson ME. Associations between posttraumatic stress disorder and hemoglobin A1c in low-income minority patients with diabetes. Gen Hosp Psychiatry. 2011;33(2):116-122
- Wagner JA, Abbott GL, Heapy A, Yong L. Depressive symptoms and diabetes control in African Americans. *J Immigr Minor Health*. 2009;11(1):66-70
- Guenther PM, Kirkpatrick SI, Reedy J, Krebs-Smith SM, Buckman DW, Dodd KW, Casavale KO, Carroll RJ. The Healthy Eating Index-2010 is a valid and reliable measure of diet quality according to the 2010 Dietary Guidelines for Americans. J Nutr. 2014;144(3):399-407
- 22. Xu J, Eilat-Adar S, Loria CM, Howard BV, Fabsitz RR, Begum M, Zephier EM, Lee ET. Macronutrient intake and glycemic control in a population-based sample of American Indians with diabetes: the Strong Heart Study. Am J Clin Nutr. 2007;86(2):480-487
- Goudswaard AN, Stolk RP, Zuithoff P, Rutten GE. Patient characteristics do not predict poor glycaemic control in type 2 diabetes patients treated in primary care. Eur J Epidemiol. 2004;19(6):541-545
- Quandt SA, Bell RA, Snively BM, Smith SL, Stafford JM, Wetmore LK, Arcury TA. Ethnic disparities in glycemic control among rural older adults with type 2 diabetes. Ethn Dis. 2005;15(4):656-663
- 25. Aikens JE, Perkins DW, Piette JD, Lipton B. Association between depression and concurrent type 2 diabetes outcomes varies by diabetes regimen. Diabetic Med. 2008;25(11):1324-1329.
- Adler AI, Stratton IM, Neil HA, et al. Association of systolic blood pressure with macrovascular and microvascular complications of type 2 diabetes (UKPDS 36): prospective observational study. BMJ 2000;321:412–419
- 27. Ali, M, Bullard, K. Characteristics associated with poor glycemic control among adults with diabetes- National Health and Nutrition Examination Survey, United States 2007-2010. Centers for Disease Control. June 15 2012. 61(02);32-37
- 28. Guerci B, Böhme P, Kearney-Schwartz A, Zannad F, Drouin P. Endothelial dysfunction and type 2 diabetes. Part 2: altered endothelial function and the effects of treatments in type 2 diabetes mellitus. Diabetes Metab 2001;27:436–447