VD01L Lube Oil Design

Vijay Mistry, Presenter J.D. Dunavin, Technical Leader Kevin O'Dell, System Owner Steven Turczyn, System Owner

Isometric View

P & ID Example

Design Input/Purchased Equipment

LF01 from PEGASUS

Pump Spec. from e-BOM

Heat Exchanger Spec. from e-BOM

Filter Spec. from e-BOM

Pressure Regulating Valve Spec. from e-BOM

LF01

- Enter PEGASUS
- Enter open project
- Click search and enter Order No. (ex. 270T670)
- Click Steam Turbine Design
- Enter Engineering/Drafting Instructions
- Remove Initials if any
- Change Status to View and Close
- Enter Activity as LF01 and press enter
- Find required inputs/information

Pump Specs

- Enter e-BOM
- Go to search By BOM
- Enter Unit No. (ex. MPL-270T670)
- Enter MLI as PR20 and press Search tab
- Open PR20 Ordering drawing Hyd & LO
- Enter Oil/Hydraulic tank (hardware)
- Enter Lube Oil

imagination at work

- Open Main Lube Oil Pump#1 & #2 Spec. in DART
- Open Pump DC Lube Oil emergency Spec. in DART
- Open Pump DC Seal Oil emergency Spec. in DART

Heat Exchanger Spec

- Enter e-BOM
- Go to search By BOM
- Enter Unit No. (ex. MPL-270T670)
- Enter MLI as PR20 and press Search tab
- Open PR20 Ordering drawing Hyd & LO
- Enter Oil/Hydraulic tank (hardware)
- Enter Lube Oil
- Open Lube Oil Heat Exchanger 1 &2 Spec. in DART

Filter Spec

- Enter e-BOM
- Go to search By BOM
- Enter Unit No. (ex. MPL-270T670)
- Enter MLI as PR20 and press Search tab
- Open PR20 Ordering drawing Hyd & LO
- Enter Oil/Hydraulic tank (hardware)
- Enter Lube Oil
- Open Filter Housing Lube Oil Spec. in DART

Pressure Regulating Valve FV-17

- Enter e-BOM
- Go to search By BOM
- Enter Unit No. (ex. MPL-270T670)
- Enter MLI as PR20 and press Search tab
- Open PR20 Ordering drawing Hyd & LO
- Enter Oil/Hydraulic tank (hardware)
- Enter Lube Oil
- Open Valve Pressure Regulating Spec. in DART

Pressure Switches Spec

- Enter e-BOM
- Go to search By BOM
- Enter Unit No. (ex. MPL-270T670)
- Enter MLI as PR20 and press Search tab
- Open PR20 Ordering drawing Hyd & LO
- Enter Oil/Hydraulic tank (hardware)
- Enter Lube Oil
- Open Pressure Switches Spec. in DART
 In general w/Seal Oil PS 266A/B are at 95 decreasing
 w/o Seal Oil PS 266A/B are at 50 decreasing

Analysis

- Check pump flow:
 Pump Spec. Vs LF01
- Check HE flow: Heat Exchanger Spec Vs LF01
- Check Filter Flow:
 Filter Spec Vs LF01
- Check Orifice size with Heat Exchanger in Parallel and pressure drop across orifice: Require calculation

270T670

PAC Case

- One AC Pump running
- EBOP & ESOP started automatically
- Low Seal Oil pressure
- Low LO header before bearing header pressure regulator
- Low pressure at Front End Standard
- FV-17 Pressure Regulating Valve 100% open

Control Factors

- FV Valve 100% open
- Orifice parallel to FV-17 Valve is 1.125 in. dia
- Pressure drop across HE is 18 psig @ actual flow
- Total flow from A.C pump is 1033 GPM
- Max designed dp across HE is 12 psig @ rated flow
- Max designed dp across Filter is 15 psig @ rated flow
- Designed Seal Oil flow is 103 GMP
- Designed Lube Oil flow is 930 GPM
- Min. required Pressure at front end standard is 25 psi during
 AC pump operation & 12 psi during DC pump operation

P & ID

Pump Curve

Pump Data Sheet

GE Part Number	383.A.3340P0031	383A3340P0032	383A3340P0033	383 A 3340P0034	383.A.3340P00	35	383A3340P0036
Nominal H2 gas pressure supplied	60	60	60	60	60		60
GPM	400-550	551-715	716-850	400 -55 0	551-715		716-850
PSI	1 3 0	130	130	130	130		130
Motor Speed (RPM)	2950	2950	2950	2950	2950		2950
Motor HP	100	100	125	100	100		125
Motor Frequency (Hz)	50	50	50	50	50		50
Space Heater Voltage (VAC)	110	110	110	220	220		220
I mpe ller Diameter (inches)	11 7/8	12 1/4	12 5/8	11 7/8	12 1/4		12 5/8
Ришр Сигуе	4013-110 (Figure 16)	4013-108 (Figure 17)	4013-109 (Figure 18)	4013-110 (Figure 16)	4013-L08 (Figure 17)		4013-109 (Figure 18)
Buffalo Pump Oufline	CC16047-147	CC16047-147	CC16047-147	CC16047-147	CC16047-	47	CC16047-147
Motor Model #	5KS405ST199 BP	5K8405ST199 BP	LATER	5KS405ST199 BP	5KS405ST: BP	189	LATER

LF01

For AC Pumps	GPM	Heat load	BTU/hr	
FLOW W/O SEAL OIL	846	HEAT LOAD (BTU/HR)	6748435.2	
SEAL OIL FLOW	103.1	HEAT LOAD WITH MARGIN	7423278.72	
COMBINED FLOW	949.1	MARGIN :	10	
FLOW W/ 10% NO SEAL	930.6			
FLOW W/ 10% + SEAL	1033.7	Pressure Requirements	P (psig)	
		H2 Gas pressure	60	
For DC Pumps	GPM	Seal oil Differential pressure	5	
DC EMERGENCY FLOW	617.58	Height from pump to centerline	15	
DC EMG + 10%	679.338	HSF supply pipe losses	5	
DC EMG + 10% + DCseal	823.038	Margin	10	
		For DC situation:	95	
		Cooler loss	12	
		Filter loss	15	
		Pressure Control Valve	4	
		Check valves	4	
		For AC situation	130	

Heat Exchanger Data Sheet

SIZE	DWG NO	SH F	REV
Α	364A7110	16	C

8.2 Ordering Information

Max. Coolant temperature = 105F

GE Part Number	Alfa Laval Part	Alfa Laval	Number	Oil Flow	Heat Load	Required	Notched
	Number	Model	of Plates	(GPM)	(KBTU/HR)	Coolant	Carrying
			in Heat			Flow	Bar
			Exchanger			(GPM)	Required
364A7110P0003	GE-MOT-650-003	M15M	84	400-450	2100-2850	512	NO
364A7110P0007	GE-MOT-650-007	M15M	110	400-450	2860-3600	665	YES
364A7110P0006	GE-MOT-650-006	M15M	104	451-500	2600-3500	636	YES
364A7110P0007	GE-MOT-650-007	M15M	110	501-550	2600-3600	629	YES
364A7110P0008	GE-MOT-650-008	M15M	118	551-600	3000-4000	717	YES
364A7110P0009	GE-MOT-650-009	M15M	132	601-650	3400-4400	772	YES
364A7110P0010	GE-MOT-650-010	M15M	142	651-715	3800-4800	850	YES
364A7110P0011	GE-MOT-650-011	M15B	177	716-800	4200-5200	812	YES
364A7110P0012	GE-MOT-650-012	M15B	199	801-850	5100-6100	973	YES

Filter Data Sheet

3.1 <u>Design Requirements</u>

TABLE 1

Ι.		
	Part Number	368A9312P001
	Design operating pressure (psig)	150 psig
K	Design operating pressure (psig) Flow range (gpm)	0 - 750 gpm
	Max. vessel pressure drop (vessel only w/ 20 centipoise, 125 F)	3 psid at 750 gpm
I	Piping connections (two places)	6.00"-150# RF
	Internal style	12 cartridges vertically mounted
	Filter Cartridge	368A9313P001
	Cleaning Instructions (Interior and Exterior)	P4A-AL-1801; SP 6
	Painting Instructions (Exterior surfaces)	P6A-AL-0011
	Outline (DIS-130)	See tabulation 8.2

Orifice Calculating Sheet

ORIFICE	PLATE SIZIN	G FOR LIQ	UID FLOW				
OTT.II TOE		J T OTT EIG					
Tung and	⊔ I Mikas inovic,	Chemical E	Engineering	, Dec 12	2, 1983 p 69		
K vs beta	correlation by	JNS					
		Find ori	fice size			Find pres	sure drop
Input Da	ta			$\overline{}$			
·	Flow rate	USgpm	173		Flow rate	USgpm	1270
	Fluid SG		0.86		Fluid SG		0.86
	Pipe ID	in	4		Pipe ID	in	8
	Press. drop	psi	43		Orifice dia	in	6.22
Result							
	Orifice dia	in	1.126		Press. drop	psi	2
Calcs	Vel	fps	4.405	$-\!$	Vel	fps	8.085
Caics			53.66	$-\!\!\!\!/-$	Density		53.66
	Density	pcf		$-\!\!\!/-$	•	pcf	
	Press drop	psf	6192		beta		0.778
	K		383		k		5
	beta		0.282		Press drop	psf	265

Control Valve Calc.

Table 27, Design ED, Class 125-600, Linear Cage

Linea	31														Charac	teristi				
Valve Size,		ort meter		ilmum vel ⁽²⁾	Flow Coeffi-			Val	ve Open	ing—Pe	roent of	Total Tra	vel			FL ⁽¹⁾				
Inohes	mm	Inches	momo	Inches	olent	10	20	30	40	60	60	70	80	90	100	100				
					C _v	3.21	5.50	8.18	10.9	13.2	15.0	16.9	18.6	19.9	20.6	0.8				
1 & 1.25	33.3	1.3125	19	0.75	K _v	2.78	4.76	7.05	9.43	11.4	13.0	14.6	16.1	17.2	17.0					
	l				XT	0.340	0.644	0.494	0.509	0.532	0.580	0.610	0.629	0.628	0.636					
					C,	4.23	7.84	11.8	15.8	20.4	25.3	30.3	34.7	37.2	39.2	0.8				
	47.6	1.875	19	0.75	K _V	3.66	6.76	10.2	13.7	17.6	21.9	25.2	30.0	32.2	33.9					
	47.6	1.875	19	0.75	XT	0.656	0.709	0.758	0.799	0.738	0.729	0.708	0.686	0.683	0.656					
1.5	l				Fd	0.30	0.37	0.41	0.44	0.44	0.41	0.38	0.35	0.34	0.34					
					C,	2.92	5.70	9.05	12.5	15.6	18.5	21.1	23.9	26.8	29.2	0.9				
	33.3	1.3125	19	0.75	κ,	2.63	4.93	7.83	10.5	13.5	16.0	15.3	20.7	23.2	25.3					
					XT	0.690	0.651	0.633	0.634	0.650	0.666	0.708	0.718	0.737	0.733					
					C,	7.87	16.0	24.9	33.4	42.1	51.8	62.0	68.1	70.6	72.9	0.7				
				1.125	κ,	6.61	13.5	21.5	25.9	35.4	44.0	63.6	68.9	61.1	63.1					
58.7	2.3125	29	1.125	XT	0.641	0.720	0.728	0.767	0.793	0.754	0.683	0.658	0.652	0.638						
2	33.3 1.3125				Fd	0.30	0.35	0.36	0.37	0.37	0.36	0.35	0.35	0.34	0.33					
				C,	3.53	6.36	9.92	13.3	16.5	19.7	22.7	25.6	29.3	33.3	0.8					
			19	0.75	κ,	3.06	5.50	0.65	11.5	14.3	17.0	19.6	22.1	26.3	25.5					
		~ ~			X _T	0.456	0.529	0.549	0.582	0.611	0.633	0.671	0.723	0.727	0.694					
				\Box	C _v	9.34	21.6	35.5	49.5	62.7	74.1	83.6	93.5	102	108	0.8				
	l	l	5 38	38	1.5	1.5	1.5	4.5	K _V	5.05	15.7	30.7	42.5	54.2	64.1	72.3	80.9	55.2	93.4	
	73.0	2.875						X _T	0.680	0.660	0.644	0.669	0.674	0.706	0.716	0.687	0.658	0.641		
2.5	l				F _d	0.27	0.33	0.35	0.36	0.35	0.34	0.32	0.29	0.27	0.27					
				\vdash	C _v	4.10	8.09	12.3	15.7	21.1	26.8	33.7	41.3	49.2	57.0	0.8				
	47.6	1.875	19	9 0.75	K _V	3.66	7.00	10.6	14.4	10.3	23.2	29.2	36.7	42.6	49.3					
					X _T	0.668	0.646	0.684	0.688	0.698	0.694	0.678	0.668	0.669	0.666					
					C,	14.5	32.9	52.1	70.4	88.5	105	118	133	142	148	0.8				
					K _V	12.5	25.5	45.1	50.9	76.6	90.5	102	115	123	125					
	87.3	3.4375	38	1.5	XT	0.671	0.699	0.697	0.720	0.733	0.718	0.707	0.650	0.630	0.620					
3	l				F _d	0.26	0.32	0.35	0.36	0.36	0.36	0.36	0.28	0.29	0.30					
					C,	8.06	16.9	26.7	37.5	49.0	61.4	73.8	85.3	94.7	102	0.8				
	58.7	2.3125	29	1.125	K _v	6.97	14.6	23.1	32.4	42.4	53.1	63.6	73.5	81.9	55.2					
					XT	0.592	0.614	0.662	0.672	0.674	0.676	0.694	0.722	0.736	0.732					
				\Box	C,	23.3	50.3	78.1	105	127	152	181	203	223	236	0.8				
					N _v	20.2	43.5	67.6	90.5	110	131	167	175	103	204					
	111 1	7.375	51	2	XT	0.691	0.714	0.720	0.731	0.764	0.757	0.748	0.762	0.732	0.688					
4	l				Fd	0.31	0.36	0.38	0.38	0.37	0.35	0.32	0.30	0.27	0.28					
				\Box	C,	9.77	22.6	37.2	51.8	65.7	77.5	87.5	97.9	107	113	0.8				
	73.0	2.875	38	1.5	K,	8.45	19.5	32.2	44.5	50.0	67.0	76.7	84.7	92.6	97.7					
	Contr				XT	0.926	0.899	0.873	0.904	0.919	0.962	0.972	0.937	0.891	0.872					

1. At 100% travel.

The officents island above for the 6-inch inear cage with 51 mm (2-inch) travel are not sufficient for your application, consider using the quick opening cage. The 6-inch quick opening cage with 51 mm (2-inch) travel has approximately a linear characteristic.

Restricted into.

Calculations

- HE rated flow range is 801 to 850 GPM
- Filter rated flow range is 0 to 750 GPM
- AC pump # 1 discharge pressure @ 1033 GPM= 335 ft or 125 psi
- Pressure after Filter #1 = 125 18 15 4 = 88 psi
- Upstream pressure of FV-17 = 88 psi
- Required Downstream pressure of FV-17 = 25 + 15 + 5 = 45 psi
- Pressure drop across FV-17 Valve = 88 45 = 43 psi
- Calculated flow through Orifice @ 43 psi = 173 GPM
- Flow through FV-17 Valve @ = 930 173 = 757 GPM

Calculations

- Cv = Q/ SQRT(dp/G)
- Cv = Flow Coefficient
- Q = Flow rate GPM
- dp = Pressure drop across FV-17 psi
- G = Specific Gravity of Oil
- Cv of 4 in. FV-17 Valve = 107
- % of FV-17 Valve open = 90%

Conclusion

- Pump, HE and Filter are not rated for the actual flow
- Check Pressure Setting of PS266A/B

Revised Calculations-1

- AC pump # 1 discharge pressure @ 1033 GPM= 335 ft or 125 psi
- Pressure after Filter # 1 = 125 12 15 4 = 94 psi
- Upstream pressure of FV-17 = 94 psi
- Required downstream pressure of FV-17 = 25 + 15 + 5 = 45 psi
- Pressure drop across FV-17 Valve = 94 45 = 49 psi
- Lube Oil Flow = 930 GPM
- Flow through Orifice = 0.5* 930 = 465 GPM
 - Assume 50%- 50% flow split among orifice and FV-17 Valve (can be between 40% - 60%)
- Calculated Orifice dia. @ 49 psi = 1.73 in.
- Flow through FV-17 Valve @ 49 psi = 930 465 = 465

Revised Calculations-1

- Cv = Q/ SQRT(dp/G)
- Cv = Flow Coefficient
- Q = Flow rate GPM
- dp = Pressure drop across FV-17 psi
- G = Specific Gravity of Oil
- Cv of 4 in, FV-17 Valve @ = 62
- % of FV-17 Valve open @ = 45.5%

Conclusion

- Change the Orifice dia.
- Increase HE Plates
- Change pressure settings for PS 266A/B or change pressure switch of lov dead band.

270T691

PAC Case

- Total designed flow from A.C pump is 315 GPM
- Following observation were made on TG @ 80-85 deg F Oil
- FV Valve 100% open
- AC Pump # 1 : 22 psig @ Front End Standard & 39 psig @ PT-270
- AC Pump # 1 & 2 : 28 psig @ Front End Standard & 47 psig @ PT-270
- DC Pump: 11 psig @ Front End Standard & 25 psig @ PT-270
- Bearing # 1 Orifice size: not available
- Bearing # 2 Orifice size : 0.813 X 3
- Bearing # 3 Orifice size : 0.266 X 5
- Bearing # 4 Orifice size : 0.266 X 5

imagination at work

P&ID

Pump Curve

Pump Data Sheet

380 VAC APPLICATIONS

GE Part Number	383A3360P0013	383A3360P0014	383A3360P0015	7	383A3360P0016	38	3A3360P0017	383A3360P0018
Nominal H2 gas pressure supplied	N/A (Air cooled)	30/45	60		N/A (Air cooled)	30	/45	60
GPM	300-400	300-400	300-400	\Box	300-400	3(0-400	300-400
PSI	85	115	130	\Box	85	11	5	130
Motor Speed (RPM)	2950	2950	2950		2950	29	\$0	2950
Motor HP	60	75	75		60	75	5	75
Motor Frequency (Hz)	50	50	50		50	5()	50
Space Heater Voltage (VAC)	110	110	110		220	22	20	220
Impeller Diameter (inches)	10 1/4	10 5/8	11 1/8		10 1/4	10	5/8	11 1/8
Ριυπρ Сιυγε	5011-128 (Figure 4)	3013-125 (Figure 5)	3013-126 (Figure 6)		5011-128 (Figure 4)	-)13-125 igure 5)	3013-126 (Figure 6)
Buffalo Pump Cutline				\lceil	-	1		
Motor Model #				1		/		

LF01

For AC Pumps	GPM	Heat load	BTU/hr
FLOW W/O SEAL OIL	287	HEAT LOAD (BTU/HR)	2124254.4
SEAL OIL FLOW	0	HEAT LOAD WITH MARGIN	2336679.84
COMBINED FLOW	287	MARGIN:	10
FLOW W/ 10% NO SEAL	315.7		
FLOW W/ 10% + SEAL	315.7	AIR COOLED GENERATOR	
		Pressure Requirements	P (psig)
For DC Pumps	GPM	Bearing Header pressure	25
DC EMERGENCY FLOW	209.51	Height from pump to centerline	15
DC EMG + 10%	230.461	Margin	10
DC EMG + 10% + DCseal	230.461		
		For DC situation:	50
		Cooler loss	12
		Filter loss	15
		Pressure Control Valve	4
		Check valve losses	4
		For AC situation	85

Orifice Calculating Sheet

ORIFICE	PLATE SIZIN	G FOR LIQ	UID FLOW				
Tung and	l Mikasinovic,	Chemical F	- Engineering	, Dec 12	2, 1983 p 69		
K vs beta	correlation by	JNS					
		Find ori	fice size			Find pres	sure drop
Input Da	ta						
	Flow rate	USgpm	83		Flow rate	USgpm	1270
	Fluid SG		0.86		Fluid SG		0.86
	Pipe ID	in	4		Pipe ID	in	8
	Press. drop	psi	10		Orifice dia	in	6.22
Result							
	Orifice dia	in	1.124		Press. drop	psi	2
Calcs	Vel	fps	2.114		Vel	fps	8.085
Caics	Density	pcf	53.66	-	Density	pcf	53.66
	Press drop	psf	1440	-/	beta	μοι	0.778
	K	μοι	387	$-\!\!\!/-$	k		5
	beta		0.281		Press drop	psf	265

Control Valve Calc

Table 27. Design ED, Class 125-600, Linear Cage

Linea	ar														Charac	Linea teristi		
Valve Size,		ort meter		imum vel ⁽²⁾	Flow Coeffi-			Val	ive Open	ing—Pe	roent of	Total Tra	wel			FL ⁽¹⁾		
Inches	mm	Inches	mm	Inches	olent	10	20	30	40	60	60	70	80	90	100	1 -		
					C,	3.21	5.50	8.18	10.9	13.2	15.0	16.9	18.6	19.9	20.6	0.84		
1 & 1.25	33.3	1.3125	19	0.75	K _V	2.78	4.76	7.05	9.43	11.4	13.0	14.6	16.1	17.2	17.5			
					XT	0.340	0.644	0.494	0.509	0.532	0.580	0.610	0.629	0.628	0.636			
					c,	4.23	7.84	11.8	15.8	20.4	25.3	30.3	34.7	37.2	39.2	0.8		
	47.6	1.875	19	0.75	K _e	3.66	6.78	10.2	13.7	17.6	21.9	25.2	30.0	32.2	33.9			
	47.0	1.075	13	0.75	XT	0.656	0.709	0.758	0.799	0.738	0.729	0.708	0.686	0.683	0.656			
1.5					Fd	0.30	0.37	0.41	0.44	0.44	0.41	0.38	0.35	0.34	0.34			
					C,	2.92	5.70	9.05	12.5	15.6	18.5	21.1	23.9	26.8	29.2	0.9		
	33.3	1.3125	19	0.75	κ,	2.63	4.93	7.83	10.5	13.5	16.0	15.3	20.7	23.2	25.3			
					XT	0.690	0.651	0.633	0.634	0.650	0.666	0.708	0.718	0.737	0.733			
				1.125	C,	7.87	16.0	24.9	33.4	42.1	51.8	62.0	68.1	70.6	72.9	0.7		
		22425			κ,	6.61	13.5	21.5	25.9	36.4	44.0	53.6	55.9	61.1	63.1			
58.7 2.3	2.3125	29	1.125	X _T	0.641	0.720	0.728	0.767	0.793	0.754	0.683	0.658	0.652	0.638				
2	2				Fd	0.30	0.35	0.36	0.37	0.37	0.36	0.35	0.35	0.34	0.33			
					C,	3.53	6.36	9.92	13.3	16.5	19.7	22.7	25.6	29.3	33.3	0.8		
	33.3 1.3125 (3) (3)	19	0.75	κ,	3.06	6.60	0.65	11.5	14.3	17.0	19.6	22.1	26.3	25.5				
					XT	0.456	0.529	0.549	0.582	0.611	0.633	0.671	0.723	0.727	0.694			
					C _v	9.34	21.6	35.5	49.5	62.7	74.1	83.6	93.5	102	108	0.8		
	73.0	l	20		1.5	1.5	K _V	5.05	15.7	30.7	42.5	54.2	64.1	72.3	80.9	55.2	93.4	
		2.875	2.875	38			1.5	X _T	0.680	0.660	0.644	0.669	0.674	0.706	0.716	0.687	0.658	0.641
2.5	l				F _d	0.27	0.33	0.35	0.36	0.35	0.34	0.32	0.29	0.27	0.27			
					C _v	4.10	8.09	12.3	16.7	21.1	26.8	33.7	41.3	49.2	57.0	0.8		
	47.6	1.875	19	0.75	K _V	3.66	7.00	10.6	14.4	10.3	23.2	29.2	36.7	42.5	49.3			
					X _T	0.668	0.646	0.684	0.688	0.698	0.694	0.678	0.668	0.669	0.666			
					C,	14.5	32.9	52.1	70.4	88.5	105	118	133	142	148	0.8		
	l				K _V	12.5	25.5	45.1	50.9	76.6	90.5	102	115	123	125			
	87.3	3.4375	38	1.5	XT	0.671	0.699	0.697	0.720	0.733	0.718	0.707	0.650	0.630	0.620			
3	l				F _d	0.26	0.32	0.35	0.36	0.36	0.36	0.36	0.28	0.29	0.30			
					C,	8.06	16.9	26.7	37.5	49.0	61.4	73.8	85.3	94.7	102	0.88		
	58.7 (2)	2.3125	29	1.125	K _v	6.97	14.6	23.1	32.4	42.4	53.1	63.5	73.5	51.9	55.2			
	(24)	(40)			XT	0.592	0.614	0.662	0.672	0.674	0.676	0.694	0.722	0.736	0.732			
					C,	23.3	50.3	78.1	105	127	152	181	200	223	236	0.80		
				_	κ,	20.2	43.6	67.6	90.5	110	131	157	176	193	204			
	111.1	4.375	51	2	XT	0.691	0.714	0.720	0.731	0.764	0.757	0.748	0.762	0.732	0.688			
4	l				Fd	0.31	0.36	0.38	0.38	0.37	0.35	0.32	0.30	0.27	0.28			
					C,	9.77	22.6	37.2	51.8	65.7	77.5	87.5	97.9	107	113	0.8		
	73.0	2.875	38	1.5	κ,	8.45	19.5	32.2	44.5	50.0	67.0	76.7	84.7	92.6	97.7			
	(20)	(3)			XT	0.926	0.899	0.873	0.904	0.919	0.962	0.972	0.937	0.891	0.872			

1. At . This travel.
2. If coefficient, which above for the 6-inch linear cage with 51 mm (2-inch) travel are not sufficient for your application, consider using the quick opening cage. The 6-inch cutch cage with 51 mm (2-inch) are a constitutely a linear characteristic.
3. Resoluted itim.

Control Factors

- AC Pump flow is 315 GPM
- Seal Oil flow is 0 GPM
- Orifice parallel to FV-17 Valve dia is 1.125 in.
- Max designed dp across HE is 12 psi @ rated flow
- Max designed dp across Filter is 15 psi @ rated flow
- Max designed dp across Check Valves is 4 psi
- Min. required Pressure at Front End Standard is 25 psi during AC Pump operation & 12 psi during DC Pump operation

Calculations

- HE flow range is 651 to 715 GPM
- Filter flow range is 0 to 700 GPM
- AC Pump discharge pressure is 86 psi.
- Upstream pressure of FV-17 = 86 12 15 4 = 55 psi.
- Required downstream pressure of FV-17 = 25 + 5 + 15 = 45 psi
- Downstream pressure of FV-17 = 45 psi
- Pressure drop across FV-17 = 55 45 = 10 psi
- Flow through Orifice @ 10 psi = 83 GPM
- Flow through FV-17 = 315 79 = 232 GPM

Calculations

- Cv = Q/ SQRT(dp/G)
- Cv = Flow Coefficient
- Q = Flow rate GPM
- dp = Pressure drop across FV-17 psi
- G = Specific Gravity of Oil
- Cv of 4 in. FV-17 @ 232 GPM = 68
- % of FV-17 Valve open @ 232 GPM = 53 %

Conclusion

- Pump is good
- Heat Exchanger is good
- Filter is good
- Orifice dia. is good
- LUBE OIL system is good
- Problem is not on our skid (Orifice in Bearing # 1 missing)

