Scenario 2: Manufacturing and Design: Bicycle Frame

Group 7

Fergus Stewart	14032492		
Frederick Panks	14010407		
Gaurang Sanganee	14028423		
Gawrisan Chandrakumar	14035140		
George Lundy	14017121		
Karamveer Kapoor	14008558		
Karan Pinto	13055036		

Design Requirements

Brief:

To design the frame for a high-end commuting bicycle that can be used in major cities like London with similar road infrastructure.

Objectives:

- Minimization of mass
- Minimization of cost
- Effective use of sustainable or eco-friendly materials.
- An aesthetically pleasing design

Functional and Geometric Constraints:

- Safe: No failure under loads generated from the weight of an average rider and typical road conditions (e.g. potholes)
- Durable: No failure from fatigue loading or environmental corrosion for a minimum of 10 years of daily use.
- Comfortable: Stiffness \geq a steel frame of the same height.

Agenda:

- Assessed the material and structural characteristics of a front fork.
- Executed material selection and design sustainability analysis for the components of the frame using CES Edupack.
- Created a **CAD model** of our bicycle frame using **Catia**.
- Demonstrated the structural integrity and performance of the frame under static loading conditions using Finite Element Analysis on Catia.

Description of Frame Design and Features

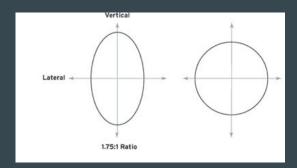
Downtube and Chainstays: Larger load region \rightarrow Oval cross-sectional shape.

- Stiffer in the vertical plane.
- Not for all components because round is more balanced, force evenly distributed.

Head tube: Vertical angle of 16° with top of stem higher than top of rear tube.

Improved steering ideal for the urban terrain & reduces risk of accidents.

Top tube: 7° with horizontal.


Bottom Bracket Drop (BBD):

- Low centre of gravity → Greater control and enhanced safety.
- Tradeoff with maneuverability around corners (Pedal height).

Wheelbase: length of 1m directly proportional to shock absorption.

Seat tube: Steep angle of 106° reflects a commuter bikes upright seating and non-racer features.

Longer chainstays help deliver a better quality ride. When you climb, the bike has more traction.

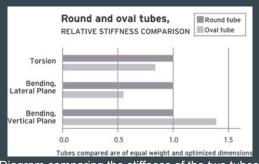
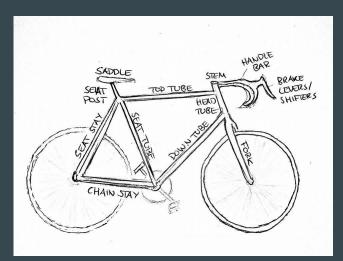



Diagram comparing the stiffness of the two tubes

Material Selection

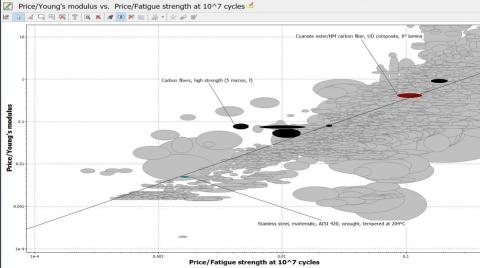
Objective equation: $m = AL\rho$

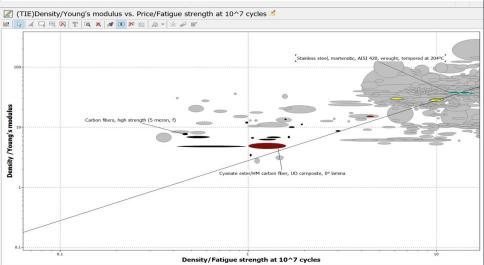
Constraint equation: $F^*/A \leq \sigma_f$

Performance Function: $m \ge (F^*)(L)(\rho/\sigma_f)$

Shortlisted Materials

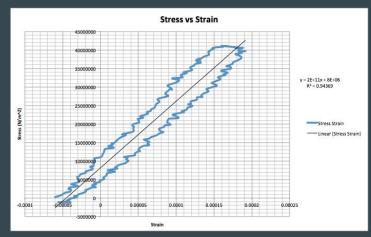
- 1) Cyanate ester/HM carbon fiber, UD composite, 0° lamina
- 2) Carbon fibers, high strength (5 micron, f)
- 3) Stainless steel, martensitic, AISI 420, wrought, tempered at 204°


Translator - Material Indices


Simple Properties: E - Young's Modulus , σ_f - Fatigue Strength, ρ - Density

Mass MPI	M=E/ρ	Μ= σ/ρ	
Cost MPI	M=E/C _m ρ	M= σ/C _m ρ	

Materials Selector (CES database)



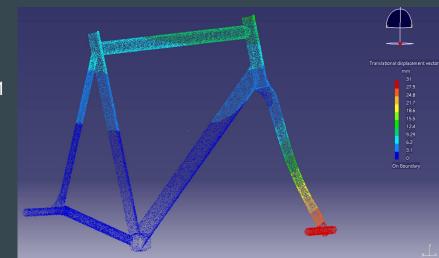
Material Selection

Materials	Price Rank	Mass Rank	CO ₂ Removal
Stainless steel	1	3	3 (-39 kg)
Carbon fibers	2	2	2 (-150 kg)
Cyanate ester	3	1	1 (-160 kg)

Evaluation of Design Performance

Comparison between CATIA analysis and experimental data: 11.32% Error

- Clip gauge position
- Catia displacement is not strictly vertical


Method: Average value of compression from data within 50mm strain gauge was compared with multiple readings of displacement from section of simulation.

Graph obtained from the lab experiment:

- Yield Stress is at strain = 0.00015
- Plastic deformation was achieved
- Young's Modulus (Slope of stress-strain curve)= 2E+11

Mechanical Failure due to:

- Plastic collapse
- Fatigue
- → Increasing thickness and tube radius which are directly proportional to the cyclic bending moment of the tube

Evaluation of Design Sustainability

Life Cycle Assessment

How?

Relevant inventory inputs and outputs

What?

An assessment of the environmental aspects and potential impacts associated with a product

Why?

To guide the design initially and assess the product in post production stages.

Maximise resource productivity:

- Transport
- Energy
- Feedstock

Drivers:

- Promoting environmental awareness
- Current and future legislation

Depleting resources

 Customer, supply chain and competitor pressure

Minimise:

- Emissions (CO2, NOx,SOx)
- Liquid and solid wastes
- End of life and manufacturing costs
- Use less hazardous, more eco-friendly materials

Evaluation of Design Sustainability

Aim:


Minimize embodied energy or CO₂ footprint per unit of function.


Conflicts:

• Trade off between lowest direct eco-impact, lightest and cheapness.

Our material choice: Carbon Fibres, high strength (5 micron,f) Why and Features:

- Dominates all but low end bike market
- Can last a lifetime
- Fatigue strength > Aluminium > Steel
- Extremely durable due to composite nature
- Frame is made from a composite of carbon fibre and resin (akin reinforced concrete)
- Interplay between carbon and resin (minimise voids, resin cross link)
- High strength to weight ratio
- Susceptible to impact loads but impact resistance has improved over time
- Great mix between light weight, crash resistant, construction flexibility and longevity

Justification for meeting Design

Requirements

Minimization of mass

• Minimization of cost

• Effective use of sustainable or eco-friendly materials

An aesthetically pleasing design

Functional and Geometric Constraints:

Safe

Durable

• Comfortable

References

http://assets.nydailynews.com/polopoly_fs/1.1397455!/img/httplmage/image.jpg_gen/derivatives/gallery_1200/baskets-bicycle-myanmar.jpg

http://www.wallcoo.net/cartoon/Greenpeace symbols recycle 1920 1600/wallpapers/1600x1200/Greenpeace symbols recycle sign 01.jpg

http://www.sevencycles.com/images/buildingbike/techsupp/ovaltubes.gif

http://www.clipartbest.com/cliparts/Kin/o5r/Kino5rgpT.png

http://ecopreneurist.com/wp-content/uploads/2012/04/Green-marketing.jpg

http://namisteel.com/demo-stuff/slider5.jpg

http://g02.s.alicdn.com/kf/HTB1lJrgFVXXXXaUXpXXq6xXFXXXb/200668119/HTB1lJrgFVXXXXaUXpXXq6xXFXXXb.jpg

http://savemoneytrip.com/wp-content/uploads/2015/11/o-SAVE-MONEY-facebook.jpg