
ZebraVision 3.0 – Team 900 
Zebravision 3.0 represents the culmination of many hours of work and research by the programming 

students for FRC Team 900, also known as the Zebracorns. It encompasses a library and several 

applications that are designed to use a Logitech C920 camera mounted to a robot to detect recycling 

bins in the 2015 FRC game: Recycle Rush. It is designed to run in real time using the OpenCV library 

onboard a NVIDIA Jetson TK1 DevKit mounted to the robot. The detection is done using the Cascade 

Classification method and Local Binary Patterns.  

Evolution of ZebraVision 
Our first version of ZebraVision was used during the 2012 competition season. The game was Rebound 

Rumble and we decided to use stereoscopic vision with dual Axis 206 cameras. As this was the year 

before bandwidth limitations we abused the network as both cameras were streaming to our driver 

station to perform the calculations.  We used stereoscopic vision to accurately determine the distance 

to the hoop from any point around the key. After locating the target in both cameras and matching we 

used the four corners and the centroid to increase the accuracy of angle and distance. At further 

distances we used the 4 targets together to determine the distance.  With the addition of bandwidth 

limits on the network and the implementation of QoS, we could not implement a heavy off robot 

solution in the future.  

The second version of ZebraVision was used in the 2014 competition season, Aerial Assist.  We used a 

single Axis m1011 to perform 'hot' goal detection during autonomous and with the aid of a Frisbee lined 

with retro-reflective tape were able to perform human player target detection during teleop to align the 

robot for our full-court shot.  For this implementation we relied on single frame captures rather than 

streaming to perform target detection.  This resulted in a very robust system when it came to utilizing 

the available network bandwidth. 

Rationale for Onboard Vision Processing 
In the course of our research to increase automation with the aid of video processing, some people have 
asked us, "Why process video on the robot? Why not process video on the driver station?”  The answer 
is both simple and complex.  It is simple because it comes down to an issue of control, and the variables 
involved in sending large datagrams over the network at an FRC event are beyond our control in 
addition to not being guaranteed to complete as only robot control packets is given priority. It is 
complex because there is a lot of variance in the wireless communications used for FRC 
competitions. For instance, some of the variables that determine the speed, latency, and reliability of 
the data being sent over the network: 
 

 The placement of the radio on the robot, including where in the chassis the radio is placed, and 
the orientation of the radio 

 The proximity of the radio to sources of interference and noise from the robot 

 The manufacturing deviation from one radio to another (Yes, seriously, there are some 
unexplained differences between radios) 

 The movement of the radio on the field (It's a moving target!) 

 The interference between radios on the field 



 The interference between radios and signals off the field 

 The black box nature of the Field Management System (FMS). Not all fields are managed the 
same. 

 The interference between the radio and various field elements 

 The interference between the radio and field personnel (Humans are bags of water to radios!) 
 
While we can't control many of these variables, we can minimize the use of the wireless network. 
Instead of streaming video (or even compressed video) over the wireless network back to a driver 
station, we can stick to simple control signals and process the video on the robot's internal wired 
network instead. As technology continues to evolve and FIRST adopts newer communications between 
the robot and the driver station, we will continue to re-evaluate many of these variables. For now, 
however, we have learned to avoid relying on the wireless network for our video processing. 
 

How it Works 

Cascade Classifier 
Cascade Classification is a method of finding a specific pattern in an image. This can be used to detect 

many different types of objects. A classifier is an algorithm that classifies observations (in this case a 

portion of an image) into different categories. In this case the classifier is deciding between two 

categories: object or not object. The word “cascade” refers to the fact that the classifier is made up of 

many simple classifiers (known as stages). The classifier will take an input image and put it through 

many stages. 

 

Image from Journal of Electronic Imaging0 

This diagram illustrates how the classifier works. The input window is a section of an image, and each 

number represents a stage. To detect an object in an image the input window is moved over the image 

and resized to detect objects of different sizes. At each stage the input window can be rejected (false) or 

passed on to the next stage (true). This turns out to be a powerful method. Each classifier stage is fast 

since most images are rejected quickly which means that not all stages need to be applied to each input. 

This drastically reduces the amount of computation necessary and increases the speed of the classifiers. 

http://electronicimaging.spiedigitallibrary.org/article.aspx?articleid=1100656


Training and Generating Classifiers 
Detecting anything using cascade classification requires a classifier. A classifier is a file that contains a 

description of what should be detected. Classifiers need to be generated by training. Training is done by 

code that comes with OpenCV (see the guide here1 if you want to learn more about how it works). 

ZebraVision contains prewritten scripts to automate usage of these functions. At this point, if you don’t 

have the ZebraVision library, you can pull it from GitHub with this link2. Here are a few other 

requirements to make sure that you’re set up to begin working: 

 Knowledge of Linux/Unix and basic command line navigation skills 

 Make sure you’re running on either Linux or Cygwin on Windows. We have tested the code on 

ARM and x86 architectures, and it works the same on both. 

 The training code will run faster when given more RAM. Make sure you have at least 4GB; more 

is always better. 

 Packages required: 

o Boost 

o OpenCV (To install OpenCV on Cygwin follow these3 steps.) 

o Cmake  

This tutorial will walk you through detecting the game balls from the 2014 game Aerial Assist. This is a 

good example because they are square (in an image) and a good illustration of how color does not affect 

the classifier. There are two things that you need to start training: 

 Videos with a ball in it 

 Videos without a ball in it 

These videos should be in different conditions and capture the object from different angles. From now 

on we will refer to the videos with balls in them as positive videos and the videos without as negative 

videos. Thanks to teams 19864 and 19395 whose release videos were used as positive videos. We also 

used our video6 from the NC regional in 2014. The first step is to extract images of the ball from these 

videos that we can use for training. Start by going into the imageclipper directory and building the tool: 

cmake . 

make 

mv ./bin/imageclipper.exe . 

This will build the imageclipper and put it in the root directory so it’s easier to use.  

Imageclipper is a utility that lets you step through a video and extract samples of certain frames. This 
will be useful for acquiring positive images or samples for the classifier. Now run it with a positive video 
as a parameter: 

./imageclipper.exe [path to video] 

Now you should get a window with the first frame of the video. Pressing the ‘f’ key advances one frame, 
and you can drag with your mouse to select a portion of the image. The idea is to select the object when 
it is fully visible and not blurry. The training works better when the aspect ratio of the samples are near 
constant. The line around the sample turns yellow and green when you are close to a 1:1 aspect ratio. 

http://docs.opencv.org/doc/user_guide/ug_traincascade.html
https://github.com/FRC900/2015VisionCode
http://hvrl.ics.keio.ac.jp/kimura/opencv/opencv-2.4.11.html
https://youtu.be/sLlgDgQ-K70
https://youtu.be/xfsfdWAMzeU
https://youtu.be/t1d4Y_ItZcw


To save a selection as an image press the ‘s’ key. When you are done, move the samples to the 
positive_images folder within cascade_training. 

 

Image created by Alon Greyber 

The more positives you have, the better. For our detection during the 2015 season we used about 1,300; 

for this demonstration I used 47. If you want to use my dataset and try it yourself you can get the 

positives here7. Now it’s time to generate some negative images. Since we don’t have a classifier we’ll 

just use the frames of a negative video as negatives for now. The framegrabber code will grab a 

specified percentage of frames of a video. Go into the folder and build the project. Then run the project 

with a negative video as the parameter. This will output 100 images by default. Put these images in the 

negative_images folder within cascade_training directory.  

Now we need to put these positives and negatives into a format readable by the training application. 

The easiest way to do this is with the automated script prep.sh. Before you run it there is one parameter 

you need to change. The code takes each positive and randomly rotates it and scales it slightly so that 

we can detect things that aren’t exactly like the positives. In the code there’s a line that lets you specify 

how many of these it should generate. This should be about 30x the number of positives that you have. 

In this case I chose 1410: 

 

https://drive.google.com/file/d/0B87h8FxUqjcGRU5DV1JaX2lPTVk/view?usp=sharing


Now you can go ahead and run the script. This will initially create many files and then delete them all at 

the end, leaving just a negatives.dat and positives.vec in the cascade_training folder. 

Before we begin the training, there are a multitude of parameters that can be adjusted in the 

run_training.pl script. There is a lot of documentation in the script itself, but here is an explanation of 

the parameters that you should tweak: 

-data Name of the directory that the classifier will be stored in. Our naming 
convention was classifier_X_# where X is the object being detected and # is 
which number classifier this is. Make sure to create this directory before 
starting; otherwise the code will not save your progress. 

-numStages Number of stages to generate before the code stops. You will typically not reach 
this value as stages get exponentially slower so the default is usually fine (55). 

-numPos Number of positives that the training uses. This should be about 85% of the 
number of positives that you generated in the step above. 

-numNeg Number of negatives that the training uses. There isn’t agreement about how 
this number should be picked, but using a number in a similar range to numPos 
should work. The higher this number is the longer training will take. 

-precalcValBufSize 
and  

-precalcIdxBufSize 

These parameters set the amount of memory the classifier will use. There is 
some overhead in addition to these values, so we found that each should be set 
to around 1/3 of your system’s available memory. 

 

Finished parameters list example: 

 

Now you can run the training: 

perl run_training.pl 

You should now see a list of all of your parameters followed by a line that says “TRAINING 0-stage”. This 

indicates that your training started. The first few stages will finish pretty quickly. Let’s look at a stage of 

training and decipher the output: 

===== TRAINING 1-stage ===== 
1. <BEGIN 
2. POS count : consumed   1200 : 1201 
3. NEG count : acceptanceRatio    1200 : 0.186829 
4. Precalculation time: 0 

+----+---------+---------+ 
5. |  N |    HR   |    FA   | 

+----+---------+---------+ 
6. |   1|        1|        1| 

+----+---------+---------+ 
7. |   2|        1|        1| 

+----+---------+---------+ 
8. |   3|        1|        1| 



+----+---------+---------+ 
9. |   4| 0.999167| 0.631667| 

+----+---------+---------+ 
 10.|   5|        1| 0.769167| 

+----+---------+---------+ 
 11.|   6|        1| 0.349167| 

+----+---------+---------+ 
 12. END> 
 13. Training until now has taken 0 days 0 hours         _    0 

minutes 13 seconds. 
 

Line 2: This line shows how many positives were generated and then how many are actually being used. 

The number being used is larger because some extra positives are required. 

Line 3: The first number on this line is the number of negatives being used for training and the second 

number is the acceptance ratio. The acceptance ratio is the percentage of negatives that are being let 

through to this stage of the classifier. In this case the previous classifier stage (stage 0) has already 

removed around 81% of the negative images. 

Line 6-11: Each line shows the result of testing a new filter on the current stage. There are two criteria 

that need to be satisfied before one of these becomes a new stage. These criteria are represented by 

the two columns HR and FA: 

 HR – Hit Rate is the percentage of times that the classifier accepts a positive image. Each stage 

must have a hit rate of >0.999. This is a parameter in the run_training script (minHitRate) 

 FA – False Alarms is the percentage of negative images that are allowed through the stage. By 

default the stage must accept at most 50% of the negative images. In the case above, the 

classifier accepted only 34.9%, much better than was required. This does not usually happen, 

especially in later stages. Maximum false alarms is also a parameter in the run_training script 

(maxFalseAlarmRate). 

We can calculate the end hit rate and false alarms given a number of stages, minimum hit rate, and 

maximum false alarms as follows: 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 =  𝑚𝑖𝑛𝐻𝑖𝑡𝑅𝑎𝑡𝑒𝑛    and    𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 =   𝑚𝑖𝑛𝐹𝑎𝑙𝑠𝑒𝐴𝑙𝑎𝑟𝑚𝑠𝑛 

Where n represents the number of stages completed. For example in this case I generated 28 stages so 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 ℎ𝑖𝑡 𝑟𝑎𝑡𝑒 =  0.99928 = 0.972 = 97.2% 

𝑜𝑣𝑒𝑟𝑎𝑙𝑙 𝑓𝑎𝑙𝑠𝑒 𝑎𝑙𝑎𝑟𝑚𝑠 =   0.5028 =  0.00000000373 =  0.000000373% 

The overall false alarms rate is the same as the acceptance ratio, or the percentage of images that 

survive being filtered out through all classifier stages. This means that if 1 billion negatives were added 

to the classifier on average, it would only recognize about 3.7 falsely as positives. That sounds pretty 

good but the classifier is moving the input window over the image thousands of times and repeating this 

at hundreds of different sizes.  It’s a good start but it can be improved. 



After about 25 stages, stop training. You may even have to stop before because the code tends to run 

very slowly at later stages. The next thing we are going to do is generate new negatives, known as hard 

negatives, using the classifier. Hard negatives are negatives that are falsely detected by the current 

classifier. We can generate these by running the classifier on videos with no balls in them and looking at 

what the classifier produces. Run the create_cascade script: 

 

This will take each stage and create a full classifier from it. Now go into the generate_negatives directory 

and build using Cmake. You should have a binary called generate_negatives. The parameters are listed in 

the README file but this is what you need to know for now: 

1. Path to a negative video. You can use any of them; it doesn’t really matter. 

2. Path to the classifier. This should be an xml file within the directory that your classifier is in. You 

should use the latest stage that you have, in my case 28. 

3. –negative_count X - (optional) This lets you specify the maximum number of negatives to 

generate. Some videos can generate more than 100,000 negatives, so this parameter is 

important for longer videos 

For me the command ended up being something like this: 

This will generate 10,000 negative images. Copy them from the negatives folder in generate_negatives 

to the negative_images folder in the cascade_training directory. Now that you have more negatives, you 

can go ahead and start training again. The code will prep all of the negatives and pick up where it left 

off.  

Another thing that you may want to do at some point is restart the training again. This is necessary if 

you want to add more positives. For our season detection code we have multiple directories 

(classifier_bin_1, classifier_bin_2, etc.) that each represent one run of the classifier. During the season 

we ran the classifiers on positive videos using our detection code and found bins that the code did not 

recognize. We took samples of these and used them as additional positives to construct a better 

classifier. To restart training you need to do a few things: 

1. Delete your hard negatives. Old hard negatives won’t do any good because it’s a new classifier. 

You can however reuse your negatives that you generated with framegrabber. 

2. Change the --data argument in run_training so that it’s not overwriting your older classifier. 

Remember that you need to create the directory before starting the training.  

3. Rerun the prep.sh script. This is necessary whenever new positives are added. 

4. Run the run_training script. 

That’s it! Once you’re happy with the classifier you can use it with the OpenCV example cascade 

detection code8 or use it with the bindetection code. 

https://github.com/Itseez/opencv/blob/master/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp
https://github.com/Itseez/opencv/blob/master/samples/cpp/tutorial_code/objectDetection/objectDetection2.cpp


Detection Code 

Overview 
The bindetection code is the code that was used in 2015 to detect recycling bins using an NVIDIA Jetson 

TK1 DevKit. The main file is creatively named “test”. The entire project is quite large and split up into a 

few main areas. 

 Classifier Interaction – loading and switching between classifiers at runtime 

 GPU and CPU Detection – Automatic switching between GPU and CPU depending on the 

system’s capabilities 

 Arguments – Processing command line arguments 

 Network tables – Passing data back to LabView navigation code 

 Bin tracking – Tracking bins across multiple frames 

 Detection – Detecting bins 

 Genetic Algorithm – Tuning parameters using a genetic algorithm approach  

Building and Running 
All of the code is configured to be built using Cmake. To build first enter the bindetection/galib247 

directory. This is a genetic algorithm library. It is not in use actively in the code but was used to 

determine values for multiple constants in our code. It is now listed as a dependency and must be built 

before anything else. 

make –j5 

You can stop the make as soon as it finishes building libga. The examples are not required. Exit the 

galib247 directory and do another Cmake followed by make. 

cmake 

make –j5 

This will build all of the code. To run type 

./test 

This will start the code running off of a webcam connected to your computer using the default classifier. 

To run off of a video file use 

./test <video path> 

There are other arguments that you can use as well. These are discussed in the Arguments section 

below. 

Arguments 
The bindetection code contains a separate class for parsing command line arguments (Args.hpp/cpp). 

Running the “Usage” function in the class will also display usage information. Here is a list of command 

line arguments possible: 

./test [arguments] [camera number | video name] 

Argument Action 



--frame=<frame num> Start at a given frame in the input video. Must be used in conjunction with 
the video name argument. 

--all Write every detected sample to disk 

--batch Run without GUI 

--ds Driver station mode – run without GUI and look for 4 bins 

--calibrate bring up crosshair to calibrate camera position 

--capture Save camera output to disk 

--save Save processed video to disk. This includes rectangles around each detected 
bin 

--no-rects Start with detection rectangles disabled. Detection will still take place just 
silently 

--no-tracking Start with tracking rectangles disabled 

--classifierDir= Allows you to specify an initial directory for the classifier 

--classifierStage= Allows you to specify an initial classifier stage 

 

Detection 
The actual code to search the image for an object is only one line (detectMultiScale). However, there is a 

lot that goes into this. All of the code for this is in imagedetect.cpp/hpp and some is in the test.cpp file. 

In imagedetect there are a few different functions. It is important to notice is that there are two classes: 

one for CPU detection and one for GPU detection. They are very similar except that the GPU version 

uploads and downloads from the GPU.  

Another important part of the imagedetect script is the definition at the top called DETECT_ROTATED. 

This definition will enable detection of bins that are rotated -90, 90, and 180 degrees. This works by 

rotating the image and applying the classifier 4 times, which also decreases the framerate. By default it 

is disabled.  

The bindetection code will automatically detect whether your system has a CUDA enabled graphics 

processor and accelerate the processing accordingly. The code for this can be found in the 

imagedetect.cpp/hpp files. The character ‘G’ can be used to quickly switch between GPU and CPU 

modes. Please note that the only function that is accelerated with the GPU is the detectMultiScale 

function because it is the main function and other ones would not be measurably faster on the GPU. 

 

Bin Tracking 
The bindetection code has the ability to locate bins and track them for extended periods of time. 

Because the classifier draws a rectangle around the bins, we can use the size of the rectangle in pixels 

plus the known width of the bin to compute the distance to the bin. It’s a short step from there to find 

the angle that the robot needs to turn to navigate towards the bin.  

The code also remembers where an object was in a previous frame and tries to find the same object 

again in the current frame. If the code finds the object in multiple frames in a row, it builds up a 

confidence rating which delays the disappearance of the bin after not being sighted.  

All of this is accomplished using the TrackedObject and TrackedObjectList classes inside of 

track.cpp/hpp. There are a few important functions to note: 



 processDetect(vector<Rect> objects) – Main function, takes all of the detected rects in a frame 

and updates locations of all of the objects 

 adjustAngle(float angle) – Moves all rects a certain amount based on an angle and the distances 

of each rect. This is useful because if you can track robot location and send the data back to the 

detection code, the code can auto adjust the locations of the rects so as to not lose track of 

them 

 nextFrame() – Moves onto the next frame. This will update the confidence ratings of each object 

 

Network Tables 
Networktables is a conceptually simple key/value database and is part of the WPILib. The robot runs as 

the server with clients connecting and updating frequently. Networktables can be run on the 

roboRIO/cRIO, and x86_64/ARM processors platforms running LabVIEW, C++, or Java. 

 

Image from WPILib9 

This example program simply reads or writes values from within the program. The instance of 

NetworkTables is automatically created by the WPILib runtime system. This example is the simplest 

robot program that can be written that continuously writes pairs of values (X, and Y) to a table called 

"datatable". Whenever these values are written on the robot, they can be read shortly after on the 

desktop client. 

http://wpilib.screenstepslive.com/s/3120/m/7912/l/80205-writing-a-simple-networktables-program-in-c-and-java-with-a-java-client-pc-side


The variable "table" is of type NetworkTable. NetworkTables are hierarchical, that is tables can be 

nested by using their names for representing the position in the hierarchy. 

The table is associated with values within the hierarchy, in this case the path to the data is /datatable/X 

and /datatable/Y. 

Values are written to the "datatable" NetworkTable. Each value will automatically be replicated 

between all the NetworkTable programs running on the network. 

When this program is run on the robot and enabled in Teleop mode, it will start writing incrementing X 

and Y values continuously, updating them 4 times per second (every 250 milliseconds). 

 

We created a network table called "VisionTable," and instead of passing individual values, we passed an 

array that contains the acceptance ratio, the distance, and the relative angle of an object. 

 

Classifier Interaction 
The main files that deal with classifier interaction are the classifierio.cpp and classifierio.hpp files. The 

reason that these are necessary is that the detection code only interacts with one classifier at a time, 

and to switch classifiers the code must be edited, recompiled, and run again. This code enables you to 

switch classifiers and classifier stages at runtime. This is useful because sometimes certain classifier 

stages work better than others and it can be helpful to easily compare these. Once you find a good 

classifier stage you can hardcode the value into the code and this is no longer necessary. 

 The structure that the code uses is: 

 classifier_bin_1 

o cascade_1.xml 

o cascade_2.xml 

 classifier_bin_2 

o cascade_1.xml 

o etc… 

Classifier_bin_x is a directory that represents one training run of the classifier and cascade_x.xml is a file 

that represents one stage of the classifier. This is useful because some stages will work better than 

others and it is nice to be able to switch quickly between them to find the differences. When running 

the code the following keys are used for navigation: 

Key Action ClassifierIO Class Function 

. Higher stage classifierIO.findNextClassifierStage(true) 

, Lower stage classifierIO.findNextClassifierStage(false) 



> Higher directory classifierIO.findNextClassifierDir(true) 

< Lower directory classifierIO.findNextClassifierDir(false) 

 

Genetic Algorithm 
There are a multitude of parameters in the code that can be adjusted, such as 

 Scale 

 Neighbors 

 Min Detect 

 Max Detect 

For a while we were tuning these values by hand each time we tried the application. With later stages 

and versions of the classifiers, these values became easier to set, but originally it was a big issue. We 

thought that using genetic algorithms could help us find the optimum values, especially for scale and 

neighbors. The file that has all of this code is gaTesting.cpp. The code ended up being too slow and 

inefficient, but it could be adapted for future uses. The basic idea is to provide an objective function that 

returns a value of how close you are to the target. Once you have the objective function the genetic 

algorithm will work and try to find a value for you. The objective function takes 10 different frames and 

tries to find bins in all of them. It returns a float, which is a fraction that was detected. The problem was 

that most values would not detect bins so the genetic algorithm would settle on an arbitrary value 

instead. 

ZebraVision 4.0 
ZebraVision has become an important project for the team and will be developed further. Cascade 

classification worked remarkably well for our team this season. We were able to use this code to adjust 

our robot positioning during autonomous10 in real time. There are a few things that we could have done 

better: 

 Much of our code is messy. This is a common problem while coding in build season but it is 

especially important to keep code readable and organized throughout the season. In the future 

we may switch to using an IDE to help organize our project. 

 We never found a good way to tune values such as scale and neighbors. 

 Values such as min and max detect heavily influenced the speed at which the code runs. Our 

code can detect the distance that a detected bin is and pass data back to the robot, creating a 

one way flow of data. However, if data about field location could have been transferred back to 

the vision code, adjustments to the min and max detect could be made in real time based on the 

maximum distance that a bin could be given the robot’s location and orientation. This may be an 

offseason project for our team to implement. 

The biggest downside to using cascade classifiers was the speed. We constantly had to make as many 

optimizations as possible, including sacrificing detection accuracy to run on the GPU. Next year, with 

help from NVIDIA, we will be working on using deep learning neural networks for detection. These will 

hopefully eliminate the need to tune values and help mitigate our concerns about speed.  

https://youtu.be/WqHk50xX1_A
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