
A Semantic Web based solution for an autocompletion system

Davide Palmisano
Asemantics s.r.l.

Circ.le Trionfale, 27 00100 Roma, Italia
davide@asemantics.com

Michele Minno
Asemantics s.r.l.

Circ.le Trionfale, 27 00100 Roma, Italia
michele.minno@asemantics.com

Dan Brickley
VU University

De Boelelaan 1081a, 1081 Amsterdam,
The Netherlands

danbri@danbri.org

Michele Mostarda
Asemantics s.r.l.

Circ.le Trionfale, 27 00100 Roma, Italia
michele@asemantics.com

Abstract

The following paper describes a SKOS-based approach
to index large ontologies in order to overcome such scala-
bility and responsiveness issues that hinder an efficient and
general purpose autocompletion system. Differently from
such autocompletion systems in which the underlying vo-
cabularies are limited, flat and easily indexable with the
classical text indexing techniques, issues addressed in this
paper deal mainly with large, highly unpredictable, linked
data spaces as the one inspired by the Linked Data philos-
ophy.

1. Introduction

The term autocompletion, often used in the field of the
user interfaces and, more generally, in the human-machine
interaction technologies, refers to the capacity of the sys-
tem to predict what the user is currently typing in order
to complete the string automatically. Some autocompletion
systems found an important application in several program-
ming IDE tools and in some enhanced mobile softwares,
where the user capabilities are limited by non QWERTY-
standard keyboards [2].

Common application fields are characterized by underly-
ing well-defined and limited vocabularies, where the words
in the lexicon have different leading characters, constraints
under which the autocompletion prediction is more feasible
[3]. Actually autocompletion could find an interesting ap-
plication when, on the contrary, the underlying vocabulary
is rich, highly unpredictable and heterogeneous as the one

represented by the Linking Open Data clouds [1]. In fact,
apart from those obvious benefits that a generic user could
get from such kind of systems, as the reduced amount of
misspelling and errors, the autocompletion offers a feasible
way to improve terms disambiguation in order to enable the
user to identify in an exact manner the concept he/she wants
to refer to [5].

Classical autocompletion systems, like the well-known
Google Suggest that shows to the user a list of possible
search keywords ordered by their occurrence value, are tra-
ditionally based on the idea of matching input strings with
a list of usable words in a vocabulary. Instead each system
aiming to the terms disambiguation needs to be based on an
underlying ontology, in order not only to correctly complete
the partial text written by the user with the rest of the string,
but to match it with a concept of that ontology. To achieve
this, the possible autocompletion choices presented to the
user need to be categorized according to the concept they
are instance of, or another mechanism like the one offered
by SKOS.

In this paper an approach based on a SKOS-indexed snap-
shot of an RDF ontology is presented. For prototyping pur-
poses the DBpedia RDF ontology is used, more specifically
a relational view of it, in order to reduce the complexity
of the real-time computation of the autocompletion choices
presented to the user. This section continues with a sub-
section describing the formalization of the semantic auto-
completion problem and ends with a quick overview about
other efforts already present in literature. Section 2 presents
the main aspects of our solution, jointly with the algorithms
used. Conclusions and acknowledge close the paper.



1.1 The Semantic Web autocompletion:
problem statement

One of the best attempts to formally define the semantic
autocompletion problem is provided in [5], where the au-
thors devise a real-time mechanism that prunes the graph,
made of all the facets of a certain node, according to the
potential matching of the label with the user typed string.
Even if the authors assure the applicability of their solu-
tion providing three different deployment scenarios, it’s our
opinion that this solution, not providing as far as we can
see an indexing phase on the target ontology, could be un-
suitable from a scalability point of view when dealing with
large data spaces.

Hildebrand et al. [6], provide a serious investigation of
an autocompletion system which is also deployed in real
scenarios. Their SKOS adoption, since demonstrate its suit-
ability, deeply influenced the present work.

The rest of this section provides a formal statement of
the problem as we modeled it. This formalization could be
helpful to understand the algorithm we devised to produce
the relational snapshot of the whole DBpedia dataspace, as
described in the following section.

Informally, the problem of achieving an autocompletion
service based on the linked data paradigm could be ex-
pressed as follow:

given a string s, retrieve all the instances with a rdfs:label
property value that start with the string s grouped by the

most representative SKOS subjects

where the key issue is represented by the meaning of
the ”most representative SKOS subject”. Since every node
could be associated to several different SKOS subjects, as
depicted in Figure 1, the good behavior of the autocomple-
tion service is strictly influenced by the SKOS subject cho-
sen to represent every resource.

Actually, as showed in Figure 1, the resource with the
rdfs:label ”Kevin Spacey” is associated with several differ-
ent SKOS categories, each of them related to a different as-
pect of the ”Kevin Spacey” resource. From the autocomple-
tion point of view, the fact that the resource ”Kevin Spacey”
is presented to the user under the category ”American Ac-
tors” is much more convenient than if it is presented as an
”American expatriates in the United Kingdom” in order to
enable the user to provide an effective disambiguation.

Choosing the narrower category a resource has or the
most consistent one are solutions that, even if characterized
by a straightforward computational complexity, often lead

Figure 1. Kevin Spacey example

to undesirable results. Actually such kind of solutions don’t
take into consideration how the resource is linked with the
rest of the data space, loosing the opportunity to discover
new relationships and links between different instances and
concept. In one word, they loose the opportunity offered by
such linked knowledge.

2 The relational snapshot solution

What we call here the relational snapshot is essentially
an index built on an RDF ontology, where each tuple of the
relation refers to a resource R in the ontology and contains
the following fields:

(URI of R, rdfs : label of R, a skos : subject S of R,
rdfs : label of S)

where the skos : subject S plays the role of the category
coupled with the instance R presented to the user during the
autocompletion phase.

Figure 2. A relational snapshot

The adoption of a solution based on an index natively
stored in a relational model is motivated mainly by the fol-
lowing two considerations:



• Responsiveness of the adopted solution: as an au-
tocompletion system found in a Web based environ-
ment its natural usage and since the service could be
accessed only remotely, the responsiveness raises seri-
ous issues around the scalability of the adopted solu-
tion. It comes obvious that a 30-years old consolidated
technology still is the most appropriate one to address
such scalability problems that come up when dealing
with substring matching over a large data sets instead
of using directly the native SPARQL substring match-
ing constructs[4].

• Transparency: The relational view allows the end
users of the autocompletion service to access the in-
dexed ontology without regarding how it is stored.

• Index adaptability: Every changes in the ontology
subjected to the indexing should reflect on the index
itself. The adopted solution allows the modification
of the relational view simply accessing to the stored
tuples with SQL. RDF resources cancellation or new
insertion could be resolved trivially by one single SQL
delete or update on the index.

2.1 A SKOS based indexing

Even if the identification of the most representative
SKOS subject of a certain node seems too much related to
the perception that an user could have regarding a node, sev-
eral positive assumptions could be done around the concept
of pertinence of a resource to one SKOS subject measured
as a degree of similarity between two resource.

More precisely,

• given two resources the degree of similarity is the num-
ber of SKOS subject that they have in common and,

• the most linked resource of a give skos subject is that
resource with the most number of links from other re-
sources in the dataspace.

With this two roughly defined properties is possible to
state that the most representative SKOS subject of a given
resource is the one that has the highest similarity degree
between its most linked resource and the initial resource to
be categorized. An attempt to formalize the algorithm that
computes the most representative SKOS subject of a given
resource is provided in the rest of this section, using the
SPARQL syntax when needed.

2.2 The Most representative SKOS sub-
ject identification algorithm

Hereby follows the formal description of the algorithms
that are the foundation of our indexing techniques. Even

if a formal analysis of the computational complexity is not
provided, this formalization is necessary to make this dis-
sertation more readable and concrete. However, the compu-
tation complexity of the algorithm strongly depends on the
underlying algorithm used to resolve the SPARQL queries
on the targeted ontology.

Input: a resource URI r
Output: a SKOS subject URI s
subjects← SkosSubjects(r);
integer similarity ← 0;
SKOS subject URI s← subjects[0];
foreach subject ∈ subjects do

mostLinked←
MostLinkedResource(subject);
actualSimilarity ←
ResourceSimilarity(r, mostLinked);
if similarity ≤ actualSimilarity then

similarity ← actualSimilarity;
s← subject;

end
end
return s

Algorithm 1: The most representative SKOS subject
identification algorithm

Input: a resource URI r
Output: a set of SKOS subject URIs subjects
subjects← ExecuteSPARQLQuery(”SELECT
DISTINCT ?uri WHERE ?r skos:subject ?uri ”)
return subjects

Algorithm 2: The SPARQL query to retrieve the SKOS
subjects of a resource

Input: a skos subject URI subject
Output: a resource URI resource
subjectResources←
ExecuteSPARQLQuery(”SELECT DISTINCT
?uri WHERE ?uri skos:subject ?s”);
mostLinked← subjectResources.first();
linkedSize←
GetLinkedResources(mostLinked).size();
foreach resource ∈ subjectResources do

actualLinkedSize←
GetLinkedResources(resource).size();
if linkedSize ≤ actualLinkedSize then

linkedSize← actualLinkedSize;
mostLinked← resource;

end
end
return mostLinked

Algorithm 3: The function that retrieves the most linked
resource of a given SKOS subject



Input: a resource URI resource
Output: a set of resource URIs resources
resources← ExecuteSPARQLQuery(”SELECT
DISTINCT ?uri WHERE ?uri ?prop ?r”)
return resources

Algorithm 4: The SPARQL query that retrieves all the
instances linked to a given resource

Input: a resource URI uri1, a resource URI uri2
Output: an integer N (

0 ≤ N ≤ SkosSubjects(uri1))
similarity ← 0
foreach subject ∈ SkosSubjects(uri1) do

if subject ∈ SkosSubjects(uri2) then
similarity + +

end
end
return similarity

Algorithm 5: The function that measures the degree of
similarity between two instances

Using the defined MRSS algorithm is therefore possible
to couple each resource URI to its rdf:label property value
and its MRSS URI. This allows to achieve the autocom-
pletion process, resolving each substring matching, as the
following SQL query, where a < substring > is matched
with the label of an instance coupled with its MRSS:

SELECT label, category FROM index WHERE label
REGEXP (”< substring > %”) GROUP BY category

3 Conclusion

The paper presented a work come out from the need of
enabling the users of a profiling system to uniquely and
explicitly identify instances of an ontology that represents
concepts of interest. In this sense the Linking Open Data
URI-based approach reveals all its potential, on condition
that a suitable user interface takes into account all the is-
sues related to the term disambiguation. Even if a lot of
emphasis was given to the relational structure of the pro-
posed indexing solution, alternative approaches, based on
classical text retrieval techniques applied to SKOS, are un-
der investigation, jointly with a concrete application of the
currently adopted approach on the DBpedia dataspace.

4 Acknowledge

This work has been partially founded within the No-
Tube Project (EU FP7 Integrated Project 231761), during
research activities focused on the Semantic Web technolo-
gies application in the field of user modeling.

References

[1] T. Berners-Lee. Linked data.
http://www.w3.org/DesignIssues/LinkedData.html, Juli
2006. Stand 12.5.2009.

[2] J. Hasselgren, E. Montnemery, P. Nugues, and M. Svens-
son. Hms: A predictive text entry method using bigrams.
In Workshop on Language Modeling for Text Entry Methods,
10th conference of the European Chapter of the Association
of Computational Linguistics, pages 43–49, 2003.

[3] E. Hyvnen and E. MŁkelŁ. Semantic autocompletion. In
R. Mizoguchi, Z. Shi, and F. Giunchiglia, editors, ASWC, vol-
ume 4185 of Lecture Notes in Computer Science, pages 739–
751. Springer, 2006.

[4] J. Prez, M. Arenas, and C. Gutierrez. Semantics and com-
plexity of sparql. In International Semantic Web Conference,
pages 30–43, 2006.

[5] R. SinkkilŁ, E. MŁkelŁ, E. Hyvnen, and T. Kauppinen.
Combining context navigation with semantic autocomple-
tion to solve problems in concept selection. In K. Belhaj-
jame, M. d’Aquin, P. Haase, and P. Missier, editors, SeMMA,
volume 346 of CEUR Workshop Proceedings, pages 61–68.
CEUR-WS.org, 2008.

[6] J. Wielemaker, M. Hildebrand, J. Ossenbruggen, and
G. Schreiber. Thesaurus-based search in large heterogeneous
collections. In ISWC ’08: Proceedings of the 7th Inter-
national Conference on The Semantic Web, pages 695–708,
Berlin, Heidelberg, 2008. Springer-Verlag.


