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ABSTRACT

This study advances the use of remote sensing for eutrophication and cyanobacterial bloom de-
tection in inland and near-coastal waters. The hypothesis that prokaryotic cyanobacteria can be
systematically differentiated from algae (or eukaryotic species) on the basis of their distinctive bio-
optical features is tested using a novel in situ bio-optical dataset and remotely sensed data from the
Medium Resolution Imaging Spectrometer (MERIS). The in situ dataset was collected between
2010 and 2012 from three optically-diverse South African inland waters. An empirical algorithm,
called the maximum peak-height (MPH) algorithm, was developed for operational determinations
of trophic status (chlorophyll-a), cyanobacterial blooms and surface scum from MERIS. The algo-
rithm uses top-of-atmosphere data to avoid the large uncertainties associated with atmospherically
corrected water leaving reflectance data in optically-complex and turbid waters. The detailed analy-
sis of the variability of the optical properties of the three diverse reservoirs provides new knowledge
of the inherent optical properties of South African inland waters which have previously not been
described. The study also provides the first detailed investigation of the effects of intracellular gas
vacuoles on the optics of phytoplankton using a two-layered sphere model. The results demonstrate
how gas vacuoles impart distinctive bio-optical features to cyanobacteria and cause backscattering
to be enhanced. An advanced inversion algorithm is developed for detecting phytoplankton as-
semblage type and size from water leaving reflectance data. The algorithm, based on a direct so-
lution of the equation of radiative transfer using Ecolight-S radiative transfer model, successfully
distinguishes between phytoplankton assemblages dominated by small-celled cyanobacteria and
those dominated by large-celled dinoflagellate species. It also provides reliable estimates of phy-
toplankton biomass (chl-a), and the absorption coefficients of phytoplankton and combined non-
phytoplankton particulate and dissolved matter. Finally, the application of the MPH algorithm to
a time series of MERIS data from 2002 to 2012 in South Africa’s 5o largest reservoirs is likely to be
the most comprehensive assessment of eutrophication and cyanobacteria occurrence from earth
observation data yet performed. The results confirm that widespread cyanobacterial blooms and

eutrophication remain issues of critical concern for water quality in South Africa.
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"The challenge for operational remote sensing of optical wa-
ter quality... is seen to have two components. One is to pro-
vide an effective characterization of the target inland and ad-
jacent coastal waters and the other is to streamline the data
analysis to provide maps of water properties in the time and

cost frameworks required for operational use.”

Jupp, D.L.B, Kirk, J.T.O., Harris, G.P.,, 1994, Aust. J. Mar.
Freshwater Res., 45, 801-828

Introduction



1.1  RATIONALE AND PROBLEM STATEMENT

THE SCIENCE OF WHAT IS CALLED ocean colour radiometry has advanced well beyond its initial
scope to include coastal and inland waters. The optical properties of these waters differ vastly
from open-ocean waters and therefore the requirements for remote sensing also differ substantially.
Given signals from at least three optically significant constituents besides water itself, often present
at considerably higher concentrations than open-ocean waters, these waters are complex from an
optical perspective. This requires that algorithms used for retrieval of optical and biogeochemical
variables must account for all the various water constituents. This has led to the development of
more advanced algorithms based on direct or approximate solutions to the radiative transfer equa-
tion (RTE), which relates the inherent optical properties (IOPs) to the observed apparent optical
properties (AOPs) such as the remotely sensed reflectance (R,). Simultaneously to the develop-
ment of advanced procedures, there has been a growing body of research using more simple empir-
ical algorithms to derive biogeochemical variables, most often the concentration of chlorophyll-a
(chl-a), directly from the AOPs (see review by Matthews, 2011). Such empirical approaches have
considerable value alongside more advanced algorithms due to their simplicity and robustness, the

physical basis for which can be shown to be based on the IOPs (ibid.).

The optical complexity of these waters also makes atmospheric correction of satellite radiances
more challenging and leads to substantial uncertainties and errors in water leaving reflectance and
biogeochemical products. Bright water pixels with non-negligible water leaving reflectance in the
red and near-infra red (NIR), as well as contamination of top-of-atmosphere (TOA) signals with
stray light caused by the contrast between dark water targets and the brighter adjacent land, means
that algorithms used for open-ocean applications most often fail. Correcting for the effects of con-
tinental aerosols such as dust and smoke which are highly variable in space and time is particu-
larly challenging. While substantial progress has been made (e.g. Guanter et al., 2010), there ex-
ists at this time no routine or standard atmospheric correction providing reliable water leaving re-
flectances in complex inland waters. The use of empirical algorithms targeting closely clustered
spectral features in the red and NIR of top-of-atmosphere data types offer the ability to bypass the
need for aerosol corrections which are typically associated with large errors.

The requirements in terms of sensor resolution also substantially differ with regards to inland
waters. From a spatial perspective, high resolution in the order of tens to hundreds of meters is
required to sufficiently detect smaller inland water targets. Due to the optical complexity of the
water, the spectral resolution and sensor sensitivity requirements are higher in order to sufficiently
resolve the signal from various confounding constituents. In particular, bands targeting specific
phytoplankton pigment absorption, backscattering and fluorescence features are needed in order
to derive quantitative information products related to biomass (chl-a). Furthermore, due to the dy-

namic nature of smaller inland systems, sufficient temporal resolution is required to resolve changes



occurring on daily-weekly time scales. The only recently past systematic space-borne sensor that
meets these demanding requirements is the Medium Resolution Imaging Spectrometer (MERIS)
on board the European Space Agency’s (ESA) Envisat platform (Matthews et al., 2010). Envisat
was operational from 2002 until 8 April 2012 and overlapped two years of this study which began in
2010. Therefore, at the time of writing, there are no space-born instruments systematically acquir-
ing global data that might be used for frequent near real-time observations of surface water quality
in spatially constrained inland and near-coastal waters. Furthermore the only mission with global
systematic acquisitions planned in the next decade that meets these requirements is the Ocean and
Land Colour Instrument (OLCI) on board the ESA Sentinel-3 platform scheduled for launch in

2014-2015.

The global concern related to eutrophication and cyanobacterial blooms is based on the increas-
ing occurrence of nuisance blooms which contaminate water supply systems and rivers, and repre-
sent a health risk to humans and animals through toxins produced by cyanobacteria and other algal
species (Codd, 2000, Downing et al., 2001, Smith et al,, 1999). In particular Microcystis is a severe
problem species, with a truly global distribution, and which is capable of producing Microcystin
toxin which can lead to human and animal fatalities if ingested in large quantities (de Figueiredo
et al,, 2004, Visser et al,, 2005). The incidence of such cases and its apparent relationship to liver
cancer occurrence (Fleming et al.,, 2002), make the monitoring and assessment of Microcystis in
freshwater systems a matter of global health concern (WHO, 1999). Rising global temperatures are
furthermore likely to exacerbate cyanobacterial blooms (Johnk et al., 2008, Michalak et al., 2013).
Furthermore the negative economic, ecological and social impacts of eutrophication related to in-
creased water treatment costs, negatively affected ecological function of sensitive systems, and de-
teriorated quality of the resource for recreation and conservation, make eutrophication a global en-
vironmental concern. Up till the present study however, there exists no quantitative and validated
remote sensing technique for the detection of Microcystis cyanobacteria or any other freshwater
cyanobacteria species from remotely sensed data. Furthermore, there exists no standard remotely
sensed water quality products for inland waters, including chl-a which is the foremost indicator for

eutrophication.

The quotation from Jupp et al. (1994) on the title page of this Chapter identifies two challenges
related to the use of satellite-derived optical water quality information in operational monitoring
systems. The first relates to the characterisation of the optical properties of optically complex inland
and near-coastal waters, which also includes the availability of suitable algorithms. This remains an
ongoing area of study, and significant progress has been made since the 1990s in this regard. The
second challenge relates to the processing and handling of large quantities of data, which have be-
come more feasible given the considerable advancement of computational ability during this time.
Despite the advances in both of these areas, operational use of satellite-derived water quality infor-
mation products remains scarce. It is the author’s opinion that this can be attributed to the same

problems identified in the 1990s by Jupp et al. (1994) which have generally received inadequate



attention from the scientific community, as well as policies surrounding data access and limited
non-proprietary data sources that meet the demanding resolution requirements.
Given the concerns briefly re-laid above, the present challenge for remote sensing in inland wa-

ters might be summarised as follows:

1. There is a need for the advancement of both simple empirical and advanced inversion radiative
transfer based techniques for retrieving IOPs and biogeochemical variables in inland waters,
whilst accounting for the challenges associated with atmospheric correction, and the optical

characterisation of complex waters.

2. There is a need for techniques aimed at the detection of cyanobacteria species including Micro-

cystis from remotely sensed data.

3. Thereisaneed for standard chl-a products that can be broadly applied in inland waters for mon-

itoring the occurrence and severity of eutrophication.

4. There is a need for the development of suitable techniques that can be applied for systematic
and near real-time monitoring of smaller inland waters in order to manage risks associated with

eutrophication and cyanobacterial blooms.

1.2 HYPOTHESIS, AIMS AND OBJECTIVES

This thesis aims to contribute towards solving the challenges identified above. The main aim of the
thesis is to test the hypothesis that prokaryotic cyanobacteria (predominantly consisting of Micro-
cystis) can be differentiated from eukaryotic phytoplankton (or algae) using remotely sensed data
on the basis that cyanobacteria possess unique features related to pigmentation and internal cellu-
lar structure in the form of gas vacuoles. The hypothesis is tested using both simple empirical and
advanced inversion algorithms. Whilst testing this hypothesis the thesis also aims to: develop a
simple empirical algorithm that bypasses the demanding atmospheric aerosol correction and pro-
vides trophic status estimates in the form of a standard chl-a product for inland waters; to add to
the knowledge of the optical properties of diverse inland waters; and to develop techniques that
can be used for systematic near real-time monitoring of surface water quality in small inland waters
on sub-continental scales (e.g. South Africa).

These aims are achieved through the following objectives:

1. Develop a simple empirical algorithm for differentiating cyanobacteria from algae and for the

retrieval of chl-a in inland waters without the need for an aerosol atmospheric correction.

2. Characterise the variability of absorption properties and biogeochemical variables of three op-

tically diverse South African inland reservoirs.

3. Perform a detailed analysis of the impact of intracellular gas on the IOPs of Microcystis.



4. Develop an advanced radiative transfer based inversion algorithm for detecting IOPs, size and

differentiating cyanobacteria from algae in inland waters.

5. Perform an analysis of the status and trends of eutrophication and cyanobacterial blooms in 50

of the largest South African reservoirs using the full archive of MERIS data from 2002 to 2012.

1.3 THESIS STRUCTURE

Each of the thesis objectives are addressed in a separate chapter which together comprise an exten-
sive bio-optical study testing the overall hypothesis. Each chapter is in the form of a self-contained
published or publishable study which includes a review of relevant literature, and addresses an as-
pect of the overall hypothesis. In the case of published studies, the co-authors are included due to
their contribution in an advisory and editorial capacity only. The thesis is broadly structured to
address the two approaches, namely the empirical and advanced inversion approaches. Chapters 2
and 6 present the derivation and application of the empirical approach, respectively, which frame
the overall study. The three middle chapters focus on the advanced analytical approach. Chapters
3 and 4 present empirical and modelled IOPs which are then applied with respect to the inverse
problem in Chapter 5. The content of each of these chapters is briefly summarised as follows:

Chapter 2 presents a novel empirical algorithm which may be used to differentiate between
cyanobacteria and algae in complex inland waters, whilst also providing an indicator of trophic
status through chl-a. The algorithm, called the maximum peak-height (MPH) algorithm, uses a
baseline subtraction procedure with Rayleigh corrected TOA reflectances to normalise for atmo-
spheric effects, avoiding a complicated aerosol correction.

Chapter 3 is a data-rich chapter which gives a detailed analysis of the absorption and biogeo-
chemical properties of the three study areas based on a large in situ data set collected between 2010
and 2012.

Chapter 4 presents an investigation of the optical effects of gas vacuoles on the IOPs of M. aerug-
inosa through using a two-layered sphere model and in situ bio-optical data.

Chapter s presents a hyperspectral radiative transfer based inversion algorithm for the detection
of phytoplankton assemblage type and size, as well providing estimates of IOPs and biogeochemi-
cal variables, using the data from Chapters 3 and 4.

Chapter 6 then presents the application of the MPH algorithm to the full archive (2002 to 2012)
of MERIS data in order to determined the phenology, extent and severity of eutrophication and
cyanobacteria occurrence in South Africa’s 5o largest reservoirs.

Finally, the main findings and recommendations for future research arising from the study are

discussed in Chapter 7.






This chapter is based on work published as:
Matthews, M. W, Bernard, S., and Robertson, L. (2012). An algorithm for detecting trophic status (chlorophyll-
a), cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal waters. Remote Sens-

ing ofEnvironment, 124, 637-652.

An algorithm for detecting trophic status
(chlorophyll-a), cyanobacterial-dominance,
surface scums and floating vegetation in inland and

coastal waters

A massive cyanobacterial bloom on Lake Taihu, China, as seen by MERIS on 14th August 2007.



Abstract

A novel algorithm is presented for detecting trophic status (chlorophyll-a), cyanobac-
terial blooms, surface scum and floating vegetation in coastal and inland waters using
top-of-atmosphere data from the Medium Resolution Imaging Spectrometer. The maxi-
mum peak-height algorithm uses a baseline subtraction procedure to calculate the height
of the dominant peak across the red and near-infrared MERIS bands between 664 and
885 nm caused by sun-induced chlorophyll fluorescence (SICF) and particulate backscat-
ter. Atmospheric correction of the MERIS TOA reflectance data for gaseous absorption
and Rayleigh scattering proved adequate given the spectral proximity of the relevant
bands and the sufficiently large differential spectral signal. This avoided the need to cor-
rect for atmospheric aerosols, a procedure which is typically prone to large errors in tur-
bid and high-biomass waters. A combination of switching algorithms for estimating chl-
a were derived from coincident in situ chl-a and MERIS bottom-of-Rayleigh reflectance
measurements. These algorithms are designed to cover a wide trophic range, from olig-
otrophic/mesotrophic waters (chl-a < 20 mg m™3), to eutrophic/hypertrophic waters
(chl-a > 20 mgm™?) and surface scums or ‘dry’ floating algae or vegetation. Cyanobacteria-
dominant waters were differentiated from those dominated by eukaryote algal species
(dinoflagellates/diatoms) on the basis of the magnitude of the MPH variable. This is
supported by evidence that vacuolate cyanobacteria (Microcystis aeruginosa) possess en-
hanced chl-a specific backscatter which is an important bio-optical distinguishing fea-
ture. This enables these phytoplankton groups to be distinguished from space. An algo-
rithm derived from cyanobacteria-dominant waters had a r* value of 0.58 for chl-a be-
tween 33 and 362 mgm ™3 and an error of 33.7% (N=17). The operational algorithm for
eukaryote-dominant algal assemblages gave a coefficient of determination of 0.71 and a
mean absolute percentage error of 60% for chl-a in the range 0.5 to 350 mgm ™3 (N=48).
A flag based on cyanobacteria-specific spectral pigmentation and fluorescence features
was used to identify cyanobacterial-dominance in eutrophic waters. Examples demon-
strate how the MPH algorithm can offer rapid and effective assessment of trophic status,
cyanobacterial-dominance, surface scums and floating vegetation in inland and coastal

waters.

2.1 INTRODUCTION

THE NEEDS OF NEAR-COASTAL AND INLAND USERS are generally not addressed by global ocean
colour algorithms. These algorithms primarily have an open-ocean focus and are not designed

for the predominance of case II (Morel and Prieur, 1977) and eutrophic conditions encountered



in close proximity to land. The optical complexity and sometimes extreme concentration of con-
stituents in these coastal and inland waters calls for new atmospheric and bio-optical scientific ca-
pabilities. Furthermore, user needs for such waters are typically focused on water quality rather
than biogeochemistry, and a greater emphasis is placed on the use of earth observation data for
sustainable resource management, operational detection of trophic state, and phenological char-
acterisation of eutrophication over time. The shift in scientific application also calls for new and

more applied product types such as eutrophication indices.

The European space agency’s Envisat-1 Medium Resolution Imaging Spectrometer (MERIS)
and the planned Sentinel-3 Ocean Land Colour Instrument (OLCI) are likely the optimal past
and planned sensors for near real-time frequent monitoring applications for spatially constrained
inland and transitional coastal waters (Guanter et al., 2010, Matthews, 2011). Chl-a algorithms
for MERIS in turbid, high-biomass inland and coastal waters have historically been based on the
water-leaving reflectance (Gitelson et al., 2008, 2009, Gons, 2005, Gons et al., 2002, Moses et al,,
2009a,b). However, the limited ability of routinely implemented atmospheric corrections for ac-
curately resolving the shape of the water-leaving reflectance in the red-NIR MERIS bands in high
biomass ‘bright-pixel’ waters, has hampered these efforts (Guanter et al., 2010, Matthews et al,,
2010, Schiller and Doerffer, 2005). Here, for the first time, a red-edge baseline-subtraction algo-
rithm is presented for retrieving phytoplankton biomass estimates (chl-a) from MERIS bottom-of-
Rayleigh reflectance (BRR) in low and high biomass phytoplankton-abundant inland and coastal
waters. The algorithm is named the maximum peak-height or MPH algorithm, because it uses the
position and magnitude of the chl-a fluorescence and particulate backscatter/absorption related
peaks in the MERIS red/NIR bands. The top-of-atmosphere (TOA) approach used by the MPH
algorithm avoids error-prone aerosol atmospheric correction procedures used to derive the wa-
ter leaving reflectance, while the baseline-subtraction between red and NIR bands minimizes the

atmospheric effects from the aerosol particles.

A series of switching algorithms is derived using a two-step process. First the MPH variable is
calculated using the MERIS BRR data. Then empirical relationships are identified between the
MPH variable and coincident in situ chl-a measurements. Eukaryote and cyano-dominant assem-
blages are distinguished based on the magnitude of the MPH variable and using a flag based on
reflectance features related to chl-a and cyanobacterial phycobiliprotein absorption and fluores-
cence. The dataset comprises measurements made in four diverse phytoplankton-abundant south-
ern African systems: the southern Benguela marine coastal upwelling system; and the three inland
freshwater reservoirs of Zeekoevlei, Hartbeespoort dam and Loskop dam. The MPH algorithm
is designed to provide a quantitative measure of trophic status through chl-a estimates. It covers
a wide trophic range while also offering the ability to identify surface scums and floating vegeta-
tion. The MPH algorithm is intended for operational trophic status determination, and for provid-
ing warning indicators for cyanobacteria and HABs in phytoplankton-dominant coastal and inland

systems. The study provides a thorough description and error assessment of the dataset, then gives



details of the MPH algorithm, and concludes with example applications from various southern

African and global systems.

2.2  METHODS

2.2.1 DESCRIPTION OF STUDY AREAS

The MPH algorithm was derived using datasets collected from four diverse study areas. The four
systems are similar with regard to the occurrence of HABs, but differ considerably in their phy-
toplankton community structure, biochemistry and ecological drivers. The southern Benguela is
an extremely dynamic and productive upwelling system off the west coast of southern Africa that
is affected by frequent HAB events (Pitcher and Calder, 2000). In bloom conditions, the phyto-
plankton assemblage is typically composed of a variety of dinoflagellate or diatom species varying
in toxicity, or autotrophic ciliates including Mesodinium rubrum (Fawcett et al., 2007). The optical
water type can be described as an extreme ‘Case 1, with phytoplankton being the dominant causal
IOP, and minerals and chromophoric dissolved organic matter (here referred to as gelbstoff ) play-
ing lesser roles (Bernard et al., 2001). In the inshore waters of the Benguela, the concentration of
chl-a is extremely variable, and may range from less than one mg m™ in non-bloom conditions,
to greater than 500 mg m ™ in peak bloom conditions (Pitcher and Weeks, 2006). Therefore, the
southern Benguela represents an extremely variable coastal upwelling system, and a challenging
environment for ocean colour remote sensing.

Loskop dam is the most similar of the three inland waters to the Benguela with regards to wa-
ter type and algal assemblage composition. Located at about 1000 m altitude in South Africa’s
Mpumalanga province, 150 km north east of Johannesburg, the lake shows pronounced longi-
tudinal zonation with riverine, transitional and lacustrine zones that range from hypertrophic to
oligotrophic, respectively (Oberholster et al., 2010). During winter sampling in July/August of
2011, the riverine zone was dominated by a dense bloom of the large-celled dinoflagellate, Cer-
atium hirundinella, which turned the water a chocolate brown colour. Chl-a values of up to 500
mgm™ 3 were recorded in this bloom. In the transitional and lacustrine zones further downstream,
lower biomass blooms of chlorophytes and diatoms were present. Chl-a values were near 20 mg
m™ 3 in the mesotrophic transitional zone, and less than 1 mg m™3 in the oligotrophic main basin
representing the lacustrine zone. Importantly, dense blooms of the cyanobacterium M. aeruginosa
become dominant in the riverine and transitional zones in summer months as the water temper-
ature increases. These are present alongside eukaryote species during these months. Additional
measurements found that there were also significant contributions from gelbstoff and minerals (see
Chapter 3).

The final two study areas, Zeekoevlei lake and Hartbeespoort dam, represent two of the most
productive freshwater reservoirs in southern Africa, and indeed the world (Harding, 1997, Ro-

barts, 1984). Their phytoplankton assemblages are near-permanently dominated by the colonial
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cyanobacterium M. aeruginosa and regularly exhibit dense surface blooms called ‘hyperscums’ (Zo-
hary, 1985). Chl-a values in these systems average around 200 mg m 3, with values in excess of
1000 mg m™? being frequently recorded. Despite the similar trophic status and phytoplankton as-
semblages, the two systems differ considerably in their morphology and limnology. Zeekoevlei
Lake, located just above sea level in the urban center of Cape Town, is a small (2.5 km?), shallow
(average depth of 2 m) and continuously mixed (hypermictic) natural freshwater pan (for details
see Matthewsetal., 2010). Hartbeespoort dam at an altitude of 1005 mamsl is by comparison larger
(20km?), deeper (average depth of 10 m), monomictic and stratified. The bulk IOPs of both lakes
are overwhelmingly dominated by phytoplankton and associated detrital material, but there are
also significant contributions by gelbstoff and minerals dependent on the season and meteorologi-

cal conditions.

2.2.2 CHL-A MEASUREMENTS
DESCRIPTION OF COMBINED IN SITU CHL-A DATASET

The combined data set consists of 74 in situ surface chl-a measurements with corresponding simul-
taneously acquired MERIS full resolution (FR) or reduced resolution (RR) radiometry as follows:
Benguela (N=37), Loskop (N=20), Zeekoevlei (N=9) and Hartbeespoort (N=8). The chl-a data
from the four systems were acquired through numerous fieldwork campaigns spanning a period of 9
years from 2003 to 2011. The data from the Benguela were acquired by the Department of Agricul-
ture Fisheries and Forestry, and is used with due acknowledgment. In all circumstances, surface
water samples were collected using a well-rinsed bucket from a small boat with care being taken
to minimise disturbance of the delicate surface blooms (if present). The dominant phytoplankton
group was determined by microscopy. Chl-a was determined using a different analytical technique
in each of the study areas. For the Benguela chl-a was measured by fluorometric analysis using
90% acetone (Holm-Hansen et al., 1965) in accordance with accepted marine protocols (Duck-
low and Dickson, 1994). For inland waters, spectrophotometric analyses with 90% or 95% boiling
ethanol were used due to the improved extraction efliciency of ethanol with cyanobacteria dom-
inated assemblages (Sartory and Grobbelaar, 1984). Inevitably there will be differences between
the extraction efficiencies of the solvents, and between the detection limits of the fluorometric and
spectrophotometric techniques. However, no attempt was made to quantify these errors and they
are likely to be small compared to the relative standard error of measurement. With the exception
of the Benguela dataset, all chl-a analyses were performed in triplicate, using the mean as the rep-
resentative value. The mean relative standard error (mrse) for chl-a was calculated as the standard
deviation of triplicate results divided by the mean of the triplicate results. In this way, the mrse was
determined as 17.1% (N = 31) for Zeekoevlei, 6.5% (N=38) for Hartbeespoort and 29.7% (N=54)
for Loskop. It is important to consider the high frequency (> 50%) of low chl-a values (< 10 mg

m~?) for the Loskop dataset, leading to larger relative errors.
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ERROR IN CHL-A DUE TO BLOOM PATCHINESS: DISCREET-POINT SAMPLING ERROR

Several authors have questioned the usefulness of discreet-point samples for validating remotely
sensed chl-a due to bloom patchiness (Galat and Verdin, 1989, Kutser, 2004, 2009). Discreet-point
surface samples that neglect the horizontal and vertical components may lead to mis-representative
biomass estimates especially in high biomass waters exhibiting patchy blooms, such as in this dataset.
There are also significant dilution effects associated with the disturbance of delicate buoyant sur-
face blooms during sampling. Previous estimates of the horizontal patchiness in cyano-blooms
in Hartbeespoort (Robarts and Zohary, 1992) and the Gulf of Finland (Kutser, 2004) show that
these errors can exceed two orders of magnitude. This leads to substantial within-pixel variability
in chl-a values making it difficult to validate chl-a values retrieved from remote sensing data using
discreet-point samples.

In order to gauge the likely relative magnitude of the error due to horizontal patchiness for the
dataset, coincident measurements from a Hyperspectral Tethered Spectral Radiometer Buoy (Sat-
lantic Inc.) were used. The TSRB measures the upwelling spectral radiance at a depth of 0.66 m,
Lu(0.66), and the downwelling irradiance above the surface, Ed(o+), in the spectral range 400 to
800 nm with a frame rate of 1 Hz, a resolution of 3.3 nm and an accuracy of 0.3 nm. During sam-
pling, the TSRB was allowed to drift freely in the sample area and acquire data for no less than
three min. The relative standard error of the 710 nm band, known to be significantly correlated
with chl-a values in high phytoplankton biomass waters (Gitelson, 1992, Schalles et al., 1998), was
calculated from the typical three minute burst sampling time and was used as an approximate index
for biomass patchiness. The results indicated that for Hartbeespoort, a highly stratified system with
severely patchy cyano-blooms, the error due to bloom patchiness had a mean of 14.8% and a max-
imum of 44.8% (N=17). For the Benguela, a more mixed system with occasional surface blooms,
the mean error is 10.8% (N = 44). For the hypermictic Zeekoevlei the mean error is reduced to
only 8.6% (N=18). These mean errors were used as the typical expected error to discreet-point
chl-a measurements resulting from bloom patchiness for the dataset. However, in the case of sur-
face blooms, the error is likely to be substantially larger (see Robarts and Zohary, 1992).

The total uncertainty of in situ chl-a measurements was calculated by adding the mrse of mea-
surement and the discreet-point sampling error estimates (if available). The total mean expected
error for chl-a values from discreet-point surface samples for the four systems are 29.7% for Loskop,
10.8% for the Benguela, 25.7% for Zeekoevleiand 21.3% for Hartbeespoort. These errors are shown

as error bars in figs. 2.4.2 and 2.4.3.

2.2.3 MERIS REFLECTANCE DATA
DATA PROCESSING AND ATMOSPHERIC CORRECTION

MERIS data were processed using the Basic ENVISAT Toolbox for (A)ATSR and MERIS (BEAM)

V. 4.9.0.1. The L1b data were first corrected for small spectral variations in spectral wavelengths be-
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tween pixels, detector-to-detector systematic radiometric differences, and re-calibrated using the
Level 1 Radiometry Processor V. 1.0.1 (Bouvet and Ramoino, 2009). An improved cloud prod-
uct was calculated using the Cloud Processor V. 1.5.203 (© ESA, FUB, and Brockmann Consult,
2004). In order to account for the effects of gaseous absorption in the red bands from water-vapour
(H,O), ozone (O3) and molecular Rayleigh scattering, the bottom-of-Rayleigh reflectance proces-
sor V. 2.3 was then used to compute p,, (ACR], 2006, Santer etal., 1999). p pr is the dimensionless
(dl) reflectance above the aerosol and ground system and is corrected for gaseous absorption using
climatological values for the gas content in the atmospheric column, and Rayleigh scattering which
relies on barometric pressure. This simplified atmospheric correction procedure is a first attempt
to correct the TOA signal for gaseous and Rayleigh effects, whilst ignoring the more complicated
and variable effects of absorbing aerosols (particles like smoke and dust). Importantly, the proce-
dure corrects for the significant absorption by water vapour in the band centered at 709 nm. For
comparison, and to assess the impact of the adjacency effect, the Improve Contrast between Ocean
and Land (ICOL+) processor V. 2.6 was also implemented to give the adjacency effect corrected
(AEC) BRR reflectance, or p,, ;e (Santer, 2010). The adjacency effect from Rayleigh scattering
and aerosols was computed by ICOL while taking into account the aerosol type over water as well
as the occurrence of case II waters.

The limited geographical extent of the inland water bodies in this study necessitates the use of
MERIS full resolution (FR) data, whereas in the Benguela FR data are not systematically acquired
and reduced resolution (RR) data are more frequently available for routine processing. As a result,
a combination of FR (inland) and RR (Benguela) data are used in this study. The systematic bias in
TOA radiance determined through on-board calibration has been estimated at less than 2% (Sotis,
2007). Taking account of error propagation, the error from intrinsic MERIS radiometry in the
algorithm was estimated as no greater than 4%. The overall error associated with the reflectance

based independent variables was determined through error propagation analysis.

MERIS BOTTOM-OF-RAYLEIGH REFLECTANCE DATA

MERIS reflectance spectra from single pixels were extracted from processed scenes correspond-
ing to in situ match-up stations. The time difference between the in situ surface sample collec-
tion and the MERIS overpasses is less than 2 hours (but often less than 30 minutes) for the en-
tire marine and freshwater dataset. Fig. 2.2.1 shows the bottom-of-Rayleigh reflectance data for
the match-up dataset. The spectra have been arranged to aid comparison of the spectral shapes
associated with the different waters, with spectra with fluorescence effects (681 nm) and absorp-
tion/backscatter (709 nm) maximum peak positions displayed separately. Fig. 2.2.1A shows spec-
tra from the Benguela with small 681 nm fluorescence peaks that are otherwise relatively flat at
longer wavelengths towards the NIR. The spectra from Loskop in fig. 2.2.1B have less obvious
fluorescence peaks and are noisier towards the NIR, although the magnitudes are very similar to

those in fig. 2.2.1A. The spectra in fig. 2.2.1C from Loskop and Benguela have clearly distinguish-
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able peaks at 709 nm and belong to the backscatter/absorption domain. However, there is a clear
difference between spectra from the Benguela, which typically slope downwards toward the NIR,
and those from Loskop which have a continuous upward slope. The increased NIR reflectance val-
ues from Loskop are most likely caused by the adjacency effect in the small inland water body, or

even partial contamination of the pixels from nearby land. This effect is also apparent in fig. 2.2.1B.
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Figure 2.2.1: Bottom-of-Rayleigh reflectance spectra from single pixels corresponding to co-
incident chl-a measurements from each of the four study areas as indicated. The left hand
side panels (A, B) display spectra possessing a 681 nm fluorescence related maximum peak
position, while the right hand side (C, D) those with a 709 nm backscatter related maximum
peak position. For more detail see section 2.3.2. d/ = dimensionless.

Finally, fig. 2.2.1D presents spectra from the cyano-dominant waters of Hartbeespoort and
Zeekoevlei. Three features specific to fig. 2.2.1D are worth noting: the larger magnitudes of the
709 nm peak relative to fig. 2.2.1C; a marked trough at 681 nm (arrow 1); and a small peak at 664
nm (arrow 2). These features make these spectra unique from those in the other panels. The in-
creased magnitude of the 709 peak is thought to be due to cyanobacterial internal structure and
is examined in detail in section 4.2.3 and in Chapter 4. The 681 nm trough (arrow 1) is likely the
result of a combination of biomass related fluorescence re-absorption, reduced SICF related to
the fact that the bulk of chl-a in cyanobacteria is located in photosystem I (Seppili et al,, 2007),
and state transition associated with high light adaptation in cyanobacteria (pers. comm. Stefan
Simis, 2012). Therefore a fluorescence signal at 681 nm is generally not suitable for providing chl-
a estimates in cyano-dominant waters. This feature was used to identify Microcystis blooms in the

Great Lakes (Stumpf et al,, 2012, Wynne et al,, 2008). Arrow 2 showing the elevated reflectance in
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the 664 nm band, overlaps the fluorescence emission domains of the phycobilipigments allophy-
cocyanin (APC) and phycocyanin (PC). PC is the main light harvesting pigment in cyanobacte-
ria (Bogorad, 1975), but the fluorescence likely originates from APC. The role that sun-induced
phycobilipigment fluorescence (SIPF) plays in the peak formation is speculative at present since
it has not been conclusively shown in other published works. This peak has also been observed
in model-based studies which neglect fluorescence suggesting that sparse spectral cyanobacterial
pigment absorption also plays a critical role in the peak formation (Kutser et al., 2006). This SIPF
and absorption feature will be shown later to be critical in identifying cyano-dominant waters (see

section 2.3.3), used in conjunction with the absorption maximum of PC near 620 nm.

2.3 THE MPH ALGORITHM

The baseline-subtraction MPH algorithm is similar in form to the fluorescence line height (FLH)
algorithm (Gower et al,, 1999). However, instead of having a fixed peak position, the MPH algo-
rithm searches for the position and magnitude of the maximum peakin the red/NIR MERIS bands
at 681,709 and 753 nm (bands 8, 9 and 10). The MPH algorithm uses a baseline between MERIS
bands 7 (664 nm) and 14 (885 nm) to measure the height of the red peak: this baseline was found
to give more robust results than a spectrally shifting baseline. The MPH variable is calculated as
follows:

Amax — 664

MPH = pppooe — PBR664 — (PBR885 - PBR664) X 885 — 664 (2.1)

where ppp and 4,4, are respectively the magnitude and position of the highest value from
MERIS bands at 681, 709 and 753 nm.

The MPH algorithm is designed to handle three cases, each with two sub-cases, commonly oc-
curring in phytoplankton-dominant and HAB affected waters. These can be summarised as follows,

and are discussed in detail in the following sections:

1. Mixed oligotrophic/mesotrophic low-medium biomass waters (chl-a < approx. 20 mgm™3)

a) Eukaryote-dominant assemblages with SICF signal (predominantly diatoms/dinoflagellates)

b) Special case: low biomass cyano-blooms (no observable SICF)
2. High biomass eutrophic/hypertrophic waters (chl-a > approx. 20 mgm™3)

a) Eukaryote-dominant assemblages

b) Cyano-dominant assemblages
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3. Extremely high biomass (chl-a > approx. 350 mg m™3) with surface scums (hyperscums) or

‘dry’ floating algae or vegetation

a) Eukaryote blooms and floating aquatic macrophytes

b) Cyanobacterial surface scums

2.3.1 FLUORESCENCE DOMAIN: MIXED OLIGOTROPHIC/MESOTROPHIC LOW-MEDIUM BIOMASS

WATERS

The first case relates to mixed oligotrophic/mesotrophic low to medium biomass conditions with
chl-aless than approx. 20 mgm™3. In these waters where phytoplankton is optically dominant, the
concentration of chl-a is known to be correlated with the line height of the SICF peak at 681 nm
(Giardino et al., 2005, Gitelson et al., 1994, Gower, 1980, Hoge et al., 2003, Letelier and Abbott,
1996, Neville and Gower, 1977, Zhao et al., 2008), which is typically larger than the peaks at 709
and 753 nm due to strong absorption by water. In these conditions, the MPH algorithm emulates
the FLH algorithm, calculating the line height of the fluorescence peak using the MERIS bands 7, 8
and 14. Available validation studies in inland and coastal waters using an FLH type algorithm with
MERIS have shown the significant potential of this approach (Binding and Greenberg, 2011, Gons
et al., 2008, Gower and King, 2007, Lee et al.,, 2007). An important distinction between previous
studies and the present one is the ability to detect SICF using a type of TOA reflectance, rather than
water-leaving reflectance data. The possibility to detect chl-a fluorescence at high altitudes despite
atmospheric effects was demonstrated by Neville and Gower (1977) and is further confirmed here.
Any phytoplankton assemblage possessing observable SICF is theoretically detectable using this
approach, while not taking into account complications introduced through variable fluorescence
quantum yields between species, diel and other photo-physiological variations (e.g. Suggett et al.,
2009).

A special case is encountered with low-medium biomass cyanobacteria-dominated phytoplank-
ton assemblages, which often occur in summer in the Baltic Sea. These blooms are generally not
detectable using a SICF approach. An alternative approach is to take advantage of the phycobilipro-
tein fluorescence/absorption features visible in MERIS bands at 619 and 664 nm (see fig. 1.D).
However, model studies show these features only become clearly distinguishable at chl-a concen-
trations larger than 8-10 mg m ™3, assuming a SNR of 1000 or greater for the satellite sensor (Met-
samaa et al.,, 2006). In this case, with a MERIS SNR of approx. 600 - 700 in the relevant bands and
using p., these phycobiliprotein related features are probably only distinguishable at chl-a values
larger than 20 to 30 mgm ™3 (representing medium-high biomass) (Kutser et al., 2006). The ratio of
PC:chl-a s also highly variable due to assemblage composition and intracellular and physiological
processes (Simis et al., 2005, 2007), rendering unsound chl-a estimates from PC related features.
Therefore detection of cyano-bloom initiation may not be feasible with current instruments.

For example, PC concentrations less than 50 mg m™ may not even be detected with confidence
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using in situ spectroradiometric data (Simis et al., 2007). It is also important to consider how fre-
quently this special case scenario of low biomass cyano-blooms might occur in nature, without tak-
ing into account exceptions. Given that cyanobacteria have a strong tendency to become dominant
in eutrophic high-biomass conditions, the risk of cyanobacterial dominance at chl-a < 20-30 mg
m? is small (Downing et al.,, 2001). Statistically, at chl-a concentrations < 10 mg m™?, the risk of
cyanobacterial dominance is < 10%. Furthermore, the WHO alert level two gives a cyanobacterial
chl-a concentration equal to or larger than 50 mg m ™3 for the issuing of cyanobacteria health warn-
ings; however, this may drop to between 12 and 25 mg m ™2 for more toxic species (WHO, 1999).
Given the above considerations, it is probably only possible, and arguably only necessary, to detect
cyano-blooms of high biomass from an operational risk identification perspective (ignoring special
cases such as the Baltic Sea). Therefore we can assume that the signal from backscatter/absorption
related effects becomes apparent which, as now discussed, is the second case handled by the MPH
algorithm.

2.3.2 THE BACKSCA’H‘ER/ABSORPTION DOMAIN: HIGH BIOMASS EUTROPHIC/HYPERTROPHIC

‘WATERS

The second case for the MPH algorithm concerns high biomass eutrophic/hypertrophic water with
chl-a concentrations greater than approx. 20 mg m ™ (incidentally 20 mg m 3 is the WHO classi-
fication threshold for eutrophic fresh water). These conditions are typically encountered in HAB
affected systems during bloom periods. In this case, the red peak shifts towards longer wavelengths
from a fluorescence peak at 681 nm (if present) which becomes masked by increasing chl-a ab-
sorption, to a peak near 700 nm induced by increased particulate backscatter and the offset by pure
water absorption. In high biomass phytoplankton dominant waters, chl-a is known to be signif-
icantly correlated with the height (and position) of the 709 nm peak (Gitelson, 1992). Various
ratio-type algorithms exploiting the 665 nm chl-a absorption and the 709 nm peak reflectance
features have been used to provide accurate chl-a estimates (e.g. Dall’Olmo and Gitelson, 2005,
Gitelson et al.,, 1993, 2009, Gons, 1999, Le et al., 2011, Zimba and Gitelson, 2006). When the
backscatter/absorption peak becomes more distinct than the fluorescence peak, the MPH vari-
able is calculated using the 709 nm band. This is similar to the scattered/reflectance line height
algorithms (Dierberg and Carriker, 1994, Yacobi et al., 1995 ), and also the maximum chlorophyll
index or MCI (Gower et al,, 2005). Unfortunately, MERIS and OLCI are the only current and
planned ocean colour sensors with an appropriate band at 709 nm able to utilise these types of

algorithms.

2.3.3 A METHOD FOR THE DISCRIMINATION OF CYANO-DOMINANT WATERS

A simple but robust method for distinguishing high-biomass cyano-dominant waters from eukary-

ote dominant blooms is also implemented. The method is based on two theoretical and observable
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suppositions related to the unique pigment complement of cyanobacteria (see fig. 2.2.1.D, section

2.2.3):
1. Cyano-dominant waters possess no observable SICF peak at 681 nm (arrow 1, fig. 2.2.1D)

2. Cyano-dominant waters possess an observable absorption/SIPF induced peak at 664 nm (ar-

row 2, 2.2.1D)

Based on these observable features, it is possible to distinguish waters dominated by cyanobac-
teria (fig. 2.2.1D) from those dominated by eukaryote chl-a fluorescing species (fig. 2.2.1C). This
presents itself in the MERIS waveband configuration by an observable trough at the 681 nm band
(Wynne et al,, 2008), and an observable sun-induced phycobiliprotein absorption/fluorescence
(SIPAF) peak in the 664 nm band, respectively. A previous model-based study by Kutser et al.
(2006) showed that a peak near 664 nm is a distinguishing feature of cyanobacteria blooms and
is caused by the effect of phycocyanin absorption at 620 nm and sparse pigment absorption near
664 nm (their bio-optical model did not account for fluorescence). Using the baseline subtrac-
tion technique, these two features are used to identify high biomass cyano-dominant waters (see

Wynne et al., 2008). The two baseline subtraction variables may be calculated as follows:

ICF o 681 — 664
SICFpeak = Ppress — PBRoss — (pBR709 - pBR664> X 709 — 664 (2.2)
664 — 619
SIPAFpeak = Ppres, — PBRé1o — (PBR681 - PBR619) X 681 — 619 (2.3)

The following condition, most easily expressed as a logical statement, is then used to raise a flag

for the presence of cyano-dominance:

If SICFpeqx < 0 and SIPAF,eq; > o, cyanoflag = TRUE (2.4)

The cyanoflag correctly distinguished cyano-dominant water from those dominated by eukary-

ote species in the dataset (fig. 2.2.1).

2.3.4 HANDLING OF CYANOBACTERIAL SURFACE SCUMS AND FLOATING VEGETATION

The third case handled by the MPH algorithm is extremely high biomass conditions associated
with surface scums, or hyperscums, and ‘dry’ floating algae or vegetation. Surface scums form dur-
ing calm conditions as upwardly-buoyant phytoplankton (often cyanobacteria) accumulate on the
water surface in dense mats or rafts. This is commonly observed, for example, in the waters of the
Gulf of Finland (Kutser, 2004 ), and in cyano-dominant lakes (Hu et al., 2010b, Zohary, 1985). In

these extreme conditions, the red peak shifts towards 750 nm or higher wavelengths, because the

18



absorbing effect of water is excluded or minimised. Consequently, the water leaving reflectance
resembles dry vegetation rather than water (Kutser, 2004, Kutser et al., 2009, Richardson, 1996).
It is difficult to identify a threshold value for chl-a where a transition might occur between a max-
imum peak position of 709 (band 9) and that of 754 nm (band 10). For example, Kutser (2004)
showed using a bio-optical model that this transition occurred at chl-a values close to or larger than
soo mg m™ 3, provided the phytoplankton are in suspension and the concentration of suspended
solids is held constant at 2 mg L™". However, terrestrial type reflectance has been observed for chl-
a concentrations as low as 350 mg m ™3 (Jupp et al,, 1994). Furthermore, it is possible that surface
scum conditions possessing terrestrial type reflectance can contain almost no chl-a due to photode-
gredation and chlorosis (pigment bleaching). Therefore the MPH algorithm does not attempt to
provide quantitative chl-a estimates for MERIS spectra possessing terrestrial type reflectance as
these are practically not yet quantified. Instead, a flag is raised for surface scum conditions when
the 754 nm peak overwhelms the 709 nm peak. A more general flag is raised for potential surface
scums for pixels with chl-a > 500 mg m™3, however this can be specified according to requirements

of the region of interest.

Cyanobacterial scums and eukaryotic surface blooms were distinguished from one another us-
ing the cyano-flag from section 2.3.3. This is based on the assumption that the optical properties of
the scums are not too different from cells in suspension. For pixels identified as cyano-dominant
and having either a chl-a value > 500 mg m™3, or a maximum peak position of 754 nm, a flag is

raised for cyanobacterial scum (cyano-scum) .

Floating aquatic macrophytes, such as the notoriously invasive water hyacinth Eichhornia cras-
sipes, represent a substantial problem for lake and estuarine environments. For example, water
hyacinth is often present in Hartbeespoort dam in relatively small quantities, but can rapidly be-
come widespread if not manually controlled using costly mitigation measures (van Wyk and van
Wilgen, 2002). Floating macrophytes have reflectance spectra resembling terrestrial dry vegeta-
tion (see Cavalli et al,, 2009) and may be detected by enlarged reflectance in the 754 nm band. In
these instances where a maximum peak position of 754 nm is detected, a flag is raised for floating
vegetation. For these cases, the MPH algorithm resembles the floating algae index (FAI) algorithm
used to detect floating surface scums in Lake Taihu, China with MODIS (Hu et al., 2010b). Quan-
titative chl-a estimation for floating vegetation detected by the MPH algorithm is not currently
accounted for, although might be feasible following correct parameterisation on a species basis.
Since reflectance signatures from floating macrophytes do not possess the distinctive reflectance
features of cyanobacteria, it is rather simple to distinguish between these and cyano-scum, using
equation 2.4. The separation of land and water pixels also becomes more challenging when dealing

with highly enlarged reflectance data in the NIR caused by floating macrophytes.

Each BRR spectrum was assigned to one of the following classes or MPH domains: the fluo-
rescence domain (681 nm peak), the backscatter domain (709 nm peak), and the ‘dry’ domain

(753 nm peak). For each domain, a series of least squares fitting procedures correlated the ob-
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served matching in situ chl-a concentration with the MPH variable. In each case, the following
functions were tested: exponential growth function of form y = a exp(bx), quadratic function of
formy = ax* + bx + ¢, power law function y = ax?, and linear fit y = a + bx. The goodness
of fit was in each case judged by the value of the root mean square error (rmse). The results of the

analysis are presented in section 2.4.2.

2.4 RESULTS AND DISCUSSION

2.4.1 AN ANALYSIS OF ADJACENCY EFFECT CORRECTIONS USING ICOL+

To assess the effect of the ICOL correction, a comparison between adjacency effect corrected
bottom-of-Rayleigh reflectances and uncorrected bottom-of-Rayleigh reflectances was performed
(fig. 2.4.1). Some unusual and unexpected spectral shapes were obtained following correction
with ICOL and these are illustrated using a few selected spectra (fig. 2.4.1A). Against expecta-
tions, many of the corrected spectra showed elevated values at 885 nm and unusual shapes in the
753 — 778 nm region (compare to fig. 2.2.1). To gauge the overall effect of ICOL on the red
bands, the mean percentage difference between uncorrected and corrected spectra was calculated
(fig. 2.4.1B). As expected, the effect of ICOL was to decrease the overall magnitude of the bands
in the red. The mean percentage difference was -12.6% at 664 nm, -12.2% at 681 nm, -13.5% in
at 709 nm, -10.7% at 753 nm and -5.2% at 88snm. ICOL had the greatest relative effect on the
709 nm band, while the effect further in the NIR is roughly half that. This result appears to be
against expectations, given that other studies suggest that the adjacency effect is relatively larger
in bands further towards the NIR (e.g. Odermatt et al., 2008). There is an expectation that bands
further towards the NIR would have relatively larger adjacency correction factors. Therefore, there
appears to be an overcorrection at smaller wavelengths (<709 nm) and an under-correction at
larger wavelengths. Fig. 2.4.1C and 2.4.1D illustrate the effects of ICOL on the MPH variable. It
was found that the height of the maximum peak in the red was reduced following ICOL by mean
value of 12.0%, which had a significant effect on the value of the MPH variable. The MPH variable
generally became smaller and there were more negative values (fig. 2.4.1C). The mean percentage
difference between the corrected/uncorrected MPH variable values was -47.2%, which was heavily
influenced by a small number of large outliers.

Evidently, ICOL has a large influence on the MPH variable and significant effects on the red
bands. ICOL was implemented in a way that calculates the aerosol type (that is the ;lngstriim co-
efficient, a) and the aerosol optical thickness (AOT) over water while taking into account case
I or case II water (based on the BRR at 709 nm). This means that the retrieval of the AOT and
the aerosol type (a) is determined simultaneously from NIR bands and extrapolated to smaller
MERIS bands (Santer, 2010). Therefore, the selection of an incorrect aerosol type could lead to

the unusual effects (bias) observed in the p,, .. Therefore, the unexpected effects appear to be
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Figure 2.4.1: Comparison between uncorrected bottom-of-Rayleigh reflectances (pg,) and
those corrected for the adjacency effect using the ICOL+ processor (p,pcpr)- Panel A shows
selected spectra identified because of their unusual shapes following correction with ICOL.
The change in the MERIS red bands following correction with ICOL is show in panel B. Simi-
larly, panels C and D show the change in the MPH variable after application of ICOL, for low
(C) and high ranges (D). dl = dimensionless.

associated with the retrieval of the AOT and aerosol type selection. Based on these findings, an ad-
jacency correction only taking into account Rayleigh effects is preferable, based on the recommen-
dation of Santer and Schmechtig (2000) for operational adjacency effect corrections. The main
reason for this is due to the large influence that the vertical aerosol distribution has on the aerosol
adjacency effect, which is unknown (ibid.). It seems that an adjacency effect correction including
aerosol effects over these targets is currently not well performed and introduces artifacts in the data
that cause more negative and erratic MPH variable values. Due to the sensitivity of the MPH vari-
able to relative changes in the red/NIR bands and based on these initial analyses, ICOL+ is not
recommended for application with the MPH algorithm at this stage. Undoubtedly, the small size
and eutrophic conditions of the water targets makes them extremely challenging targets for any

atmospheric or adjacency effect correction procedure.
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2.4.2 PARAMETERISATION OF THE MPH ALGORITHM
THE FLUORESCENCE 681 NM DOMAIN

Separate fits were used to best describe the fluorescence and backscatter/absorption domains. In

the fluorescence domain the best fit was given as (fig. 2.4.2):

Chla = 2.7 + 6903 X MPH (2.5)

The rmse is 3.5 mg chl-a m ™ and the mape is 69% for chl-a in the range 0.5 — 30 mgm ™3 (r*
= 0.71, p = 0.00, F=83, N=36). Therefore the algorithm is sensitive to a minimum chl-a value
of approximately 3.5 mg m™3. To improve the goodness of fit, the algorithm is constrained to data
points with maximum peak positions at 681 nm and corresponding chl-a values < 30 mgm™3. This
resulted in several outliers being excluded that had chl-a values > 30 mg m ™ (N=3). The rationale
for excluding these data is due to the difficulty in quantifying the fluorescence signal in waters with
chl-a values > 30 mg m™3 (Babin, 1996), and in order to improve the algorithm’s sensitivity at
lower values. Further to this, outliers (show in grey on fig. 2.4.2) were also excluded from the
regression, on the basis of a 95% confidence interval for studentised residuals (N=2). This also

served to improve the goodness of fit.

Fig. 2.4.2 includes several data points with negative MPH values, all of which are from Loskop.
These negative values are within the 95% confidence interval and occupy an expected region of low
chl-a concentrations. For these reasons the data are not excluded. In determining an explanation
for the negative MPH values, the specific conditions related to the target (Loskop), and the mecha-
nisms whereby the MPH variable becomes inverted must be considered. Firstly, the data points are
from the very dark oligotrophic main basin in Loskop lake. Atmospheric correction over similar,
dark, oligotrophic lakes is extremely challenging due to stray light adjacency effects and the dark
nature of the target (for the impact of the adjacency effect in subalpine lakes see Guanter et al.,
2010, Odermatt et al,, 2010). Such effects would cause reflectances in the red and NIR bands to
be enlarged resulting in an inverted (negative) MPH variable. This seems to be the most plausi-
ble explanation for the negative values and highlights the difficulty associated with handling small,

oligotrophic inland waters.

Despite this finding, the algorithm’s performance in the florescence domain seems to be very
robust given that it is capable of detecting chl-a with a sensitivity of less than 4 mg m™3 from
bottom-of-Rayleigh reflectance data. As fig. 2.4.2 shows, there were no data points from cyano-
dominant waters (Zeekoevlei/Hartbeespoort) belonging to the fluorescence domain. Table 2.4.1

shows statistics associated with the MPH variable in the fluorescence domain.
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Figure 2.4.2: Chl-a versus the MPH variable for the fluorescence domain calculated using a
maximum peak-height position of 681 nm (panel A). Only data from Loskop and Benguela

study areas belonged to this domain. Outliers are shown in grey. The observed chl-a versus

that estimated by the MPH algorithm is shown in panel B. di = dimensionless.

THE BACKSCATTER/ABSORPTION 709 NM DOMAIN

There was a large offset in MPH values between data points from Microcystis cyano-dominant wa-
ters (Zeekoevleiand Hartbeespoort) and those from eukaryote dominant waters (Loskop/Benguela)
(fig. 2.4.3). Concurrently, there was significant overlap between the data for each of these water
types. Therefore, separate fits were used for Microcystis cyano-dominant waters (prokaryotes) and
for waters with phytoplankton assemblages made up predominately of dinoflagellates or diatoms

(eukaryotes) (fig. 2.4.3A). For dinoflagellate/diatom dominant waters, the best fit was given as:

(2.6)

Chla = 37.2 + 11228.4 X MPH

The rmse is 88.8 mg m ™3 which equates to a mean percentage error (mpe) of 104% (r*=0.384,
p=0.042, F=5.6). According to studentised residual values, there were no outliers. The algorithm
was not constrained further due to the small sample number (N=11). The relatively low statistical
significance and large mpe must be taken into account given the small sample size and the large

range of chl-a values over which the algorithm is expected to perform (a range of 343 mgm™3). An

Table 2.4.1: Statistics for the MPH variable grouped by the position of the maximum peak-

height.
Domain Mean Min. Max. Range  St.dev. Chl-amin. Chl-amax.
Fluorescence 0.00073 -0.00034 0.0026 0.00029 0.00078 0.5 26.85
Backscatter (dino/diatom)  o.o105 0.0022 0.0203  0.0180 0.0059 7.7 350.4
Backscatter (cyano) 0.0465 0.0217 0.0752 0.0536 0.0124 33.0 362.5
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exponential fit was obtained for Microcystis cyano-dominant waters:

Chla = 22.4 X exp(35.8 X MPH) (2.7)

The robust nonlinear least squares estimation gave an rmse of 46.6 mg m™ corresponding to
a mape of 33.7% (r*=0.58, N=17). All of the data from cyano-dominant waters had a 709 peak
position and MPH values > 0.02 (see 2.4.1). Based on the intercept of the algorithm, only chl-a

values greater than 22.4 mg m ™3 can be estimated using the algorithm.
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Figure 2.4.3: Performance of the MPH algorithm for the backscatter/absorption domain
(panel A). Separate fits were used for cyano-dominant waters (Hartbeesport/Zeekoevlei) and
eukaryote dominant waters (Loskop/Benguela). The observed vs. predicted chl-a is shown in

panel B.

THEORETICAL CONSIDERATIONS RELATED TO CYANO-DOMINANT WATERS

The large discontinuity in fig. 2.4.3 enables us to distinguish Microcystis dominant cyano-blooms
purely on the basis of the magnitude of the MPH variable. These large and quantifiable differences
in the red-NIR reflectance between Microcystis and textitDinoflagellate/Diatom dominant waters
requires closer examination. Assuming phytoplankton is the dominant constituent with regards to
causal IOPs, the magnitude of the 709 nm peak will predominantly be dependent upon the specific
backscattering coeflicient (b;) of the dominant phytoplankton species, which is known to vary
by several orders of magnitude between different cultured species/classes (Stramski et al.,, 2001,
Whitmire et al,, 2010). Therefore, the large observed discontinuity could be explained on the basis
that Microcystis spp. cyanobacteria have significantly greater backscattering per unit chl-a (chl-a
specific backscatter coefficients, b} ) in the red than the dinoflagellate /diatom species in our dataset.
This would lead to larger MPH values such as observed in Microcystis cyano-dominant waters since

remote sensing reflectance is directly proportional to backscatter (R,; = b,/(a + b;)), while also
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providing a robust theoretical explanation for the observations. However, is there any evidence for

this hypothesis?

Firstly, there is a significant amount of evidence that gas vacuoles found in certain cyanobacterial
species (incl. M. aeruginosa) are very efficient light scatterers in the forward and backward direc-
tion (Walsby, 1994). For example, in a turbid reservoir dominated by Microcystis spp., Ganf et al.
(1989) found that 80% of light scatter could be attributed to the intracellular gas vacuoles. Fur-
ther evidence can be found in the findings of Volten et al. (1998) who showed that the presence
of gas vacuoles altered the scattering properties of phytoplankton considerably, in agreement with
the earlier findings of Dubelaar et al. (1987) who found anomalous light scatter in vacuolate M.
aeruginosa. Because morphological differences and intracellular structure has been shown to have
a large influence on backscattering (Svensen et al., 2007, Whitmire et al., 2010), the effect of gas
vesicles contained in cells on backscattering is likely to be substantial. Secondly, phytoplankton
with small diameters (d) possess larger backscatter per unit chl-a (b} ) than intermediate and large
celled species (Ahn et al,, 1992, Bernard et al,, 2009). Consequently, per unit chl-a, small-celled
vacuolate Microcystis cyanobacteria may backscatter up to two orders of magnitude greater than
larger and non-vacuolate species. Therefore, based on the presence of vacuoles, and on theoretical
explanations and experimental observations related to cell size, Microcystis cyanobacteria in many
instances posses larger b, than eukaryote and non-vacuolate species. This is examined in detail in

Chapter 4 with respect to the effects of intracellular gas vacuoles.

To verify whether this can be observed in natural waters, ancillary measurements of spectral
backscattering collected using a Hydroscat 2 meter (Hobilabs Inc.) in M. aeruginosa dominant
blooms in Hartbeespoort and in a dense (chl-a > s00 mg m ™) dinoflagellate Ceratium balechii
bloom in the southern Benguela (see Pitcher and Probyn, 2011) were used. The Hydroscat was
configured to measure the backscattering coefficient at 420 and 700 nm. The conversion between
the measured volume scattering function at 120 ° (minus pure water) to backscattering was based
on asingle conversion factor (y) obtained from instrument calibration (Maffione and Dana, 1997).
A single conversion factor is known to be generally sufficient for use with various phytoplankton
classes (e.g. Whitmire et al., 2010). From co-incident backscatter and chl-a measurements, a mean
chl-a specific particulate backscatter (pr) in Hartbeespoort was calculated as 0.4 X 103 m ™" at 420
nm and 1.98X 10 > m ™ at 700 nm (N = 13). In contrast, bzp in the marine Ceratium bloom was
0.116X10 >m™"'at420nmand 0.141X 10 > m™ " at 700 nm, an order or magnitude smaller than
for Microcystis. These measurements, made in blooms when phytoplankton was demonstrably the
dominant contributor to bulk IOPs, are within the range of those presented in Ahn et al. (1992)
and Whitmire et al. (2010). If anything, the value for Microcystis is underestimated given that the
measurements were made at a depth of 0.68 m and the blooms were floating. Nevertheless, the
measurements reveal that for M. aeruginosa, backscatter is slanted towards the red and is at least an
order-of magnitude larger in the red than for the dinoflagellate C. balechii. A detailed comparison of

the backscattering properties of dinoflagellates and vacuolate cyanobacteria is presented in Chapter
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Further supporting evidence is found in Whitmire et al. (2010) who showed that for single
species of cultured marine phytoplankton, there is a significant linear relationship between chl-a
and by, and that the magnitude and slope of by, is distinctive enough to distinguish between differ-
ent species (see Fig. 5 in Whitmire et al,, 2010). Substantial experimental and theoretical grounds
therefore exist for the result in fig. 2.4.3. This might offer significant justification for the finding that
Microcystis dominant cyano-blooms are distinguishable from non-cyanobacterial blooms based on
the magnitude of the backscatter/absorption-induced 709 nm peak, and on the observation of ac-
cessory pigment related reflectance features (such as those of phycocyanin). Given that the phyto-
plankton assemblages in our study areas were made up of comparative species, either M. aeruginosa
or Ceratium spp., the relationship between chl-a and b, was maintained between the systems, al-

lowing derivation of algorithms specific for each of these phytoplankton classes.

2.4.3 AN OPERATIONAL SWITCHING MPH ALGORITHM

In order to obtain an algorithm suitable for operational use, separate algorithms for eukaryote al-
gal assemblages and for waters identified as cyano-dominant were developed. Table 2.4.1 shows
the descriptive statistics for the MPH variable obtained from the statistical fits in figs. 2.4.2 and
2.4.3. The continuity between the fluorescence domain and the backscatter domain for eukaryotes
is good, with some overlap. Therefore, in order to obtain a single continuous algorithm for chl-a
estimation in eukaryote dominant waters, a 4th order polynomial was fitted after sorting the data

(fig. 2.4.4) to obtain the following equation:

Chla(Eukaryotes) = 5.24 X 10°mph* —1.95 X 108mph3 +2.46 X 106mph2 + 4.02 X 10°mph +1.97

(2.8)

The mean absolute percentage error between the derived function and the unsorted data is
59.9% and the r* value is 0.71. The operational algorithm is designed to operate seamlessly between
the fluorescence and backscatter/absorption domains for eukaryote SICF possessing algae. Similar
4th order polynomials are also used for the operational empirical algorithms for MODIS (OC3 M)
(Campbell and Feng, 2005) and SeaWiFS (OC4) (O’Reilly et al.,, 1998), which use the maximum
value of several band ratios, similar to the maximum peak selection of the MPH algorithm. The
polynomial fit is advantageous because it provides good continuity between the different domains
of the algorithm, shown in fig. 2.4.4A. It is important to consider that the algorithm here is not a
‘best fit’ for the data - the data has been sorted to give this fit - but rather the polynomial function
was used as to obtain the smallest difference between predicted and observed chl-a. For waters
identified as cyano-dominant based on the flag in section 2.3.3, eq. 2.7 was used (fig. 2.4.4B). The
combined performance of the algorithms (fig. 2.4.4 C and D) in each of the trophic status classes is:
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oligotrophic, mape=71%, N=26; mesotrophic, mape=19%, N=9; eutrophic, mape= 131%, N=3;

hypertrophic, mape=37%, N = 10.

1000

1000

mape = 33.7%
r? =0.58 *

G &
£ 30 - 0, e
S 30 mape = 59.9% =t
E 10 =0.71 £
* *
& &
1¢ 30 %
* 681 psak 20+
A O 709 peak B
L L 1 1 N L 10 1 L L 1 L
0 0005 001 0015 002 0025 003 002 003 004 005 008 007 008
MPH (dl) MPH (dl)
1000 1000
* Eukaryote Cligotrophic
O Cyanobacteria o Mesotrophic .
* r?ﬁ Eutrophic * o]
PN £ 100 Hypertrophic o]
e = &
= o E 30 *
£ § 20 *
~ = 10 *
z g « * i
O o * FR Tk
*F
= *
1 £F % F
C 3 D
10° 10° 10 10" 1 10 2030 100 1000
MPH (di) In situ Chl-a (mg.m)

Figure 2.4.4: The switching operational MPH algorithm for eukaryote-dominant waters
showing class membership (panel A). The MPH algorithm for cyano-dominant waters (panel
B). The combined algorithms scope and performance is shown in panels C and D. Panel D
shows the algorithms performance relative to trophic status classification.

2.5 APPLICATION AND CONCLUSIONS

2.5.1 APPLICATION TO STUDY AREAS

The operational MPH algorithm (section 2.4.3) was applied to imagery from the study areas in

order to test its performance (fig. 2.5.1). The following cases were used to assess different aspects

of the algorithm:

1. Identification of cyano-scums and cyano-dominant water in the hypertrophic waters of Hart-

beespoort Dam.

2. Trophic status detection over a wide range of trophic states from oligotrophic to hypertrophic

in eukaryotic-dominated assemblages in Loskop Dam.

3. High biomass HAB event detection in the waters of the southern Benguela and comparison of

standard MERIS L2 algal products.
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For the first test case, the cyano-flag correctly identified cyano-dominant water as well as cyano-
scums that were observed at Hartbeespoort in situ during October 2010 (fig. 2.5.1B). Cyano-scum
presents a substantial risk for significant levels of toxin production (more than 50% of cyano-scums
analysed in a sample of 50 scums in the U.K. were found to be toxic Codd, 2000). As a control, the
algorithm was also applied to a scene from winter of the same year, before the onset of the spring
cyano-bloom (fig. 2.5.1A). In this case the algorithm did not detect the presence of cyanobacteria
in the lake, although this may be a result of chl-a concentrations below the detection limits of the
cyano-flag (< 30 mg m3). Nevertheless, the example illustrates how the algorithm might be used
for cyano-detection in small hypertrophic inland waters, and serve as a warning product for both
commercial and recreational users. The cyano-flag also appeared robust when applied to a time

series of the data (see Chapter 6).
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Figure 2.5.1: Example applications of MPH algorithm to Hartbeespoort Dam (A, B) Loskop
Dam (C, D) and the southern Benguela (F). The MERIS standard L2 algal2 product is shown
in panel E. Shaded and faceted pixels indicate where the cyano-flag has been raised, while
dark green pixels indicate surface scum (chl-a > 500 mg m™3). Box 1 shows the pixels ex-
tracted for comparison with the algal2 product, while box 2 shows those extracted for compar-
ison with algall.
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For the second test case, the MPH algorithm reproduced the strong longitudinal chl-a gradient
observed in situ in Loskop during August of 2011 (fig 2.5.1C). The hypertrophic water towards
the riverine zone in the south west corner shows the presence of a persistent Ceratium dinoflagel-
late bloom, which was correctly identified as eukaryote-dominated water (not cyanobacteria) by
the algorithm. Towards the north east and the main basin of the lake, the algorithm reproduced
the gradual trophic gradient until oligotrophic water was detected in the main basin (chl-a < 3 mg
m~?). This demonstrates the algorithm’s ability to operate over a large trophic range, switching
smoothly between the 681 nm fluorescence and 709 nm backscatter/absorption-induced peaks as
the optimal signal source. A second image from October 2011 shows that the bloom has moved
further downstream towards the main basin of the lake most likely in response to the first spring
rainfall (fig 2.5.1D). This example illustrates the capability of the MPH algorithm to operate across
a wide range of trophic states in a small lake with some confidence and shows how the MPH algo-

rithm might be used as a trophic status indicator in small inland waters.

The final test case is a high-biomass Prorocentrum triestinum bloom that occurred in the south-
ern Benguela during March 2005 (fig. 2.5.1 E and F). Chl-a derived from the MPH algorithm
correctly estimated the extremely high concentrations (> 500 mg m™?) that were observed in situ
towards the coastline, and which occurred occasionally in dense patches (fig. 2.5.1F). However,
the standard MERIS L2 algal1 and the case II algal2 product (fig. 2.5.1E) severely underestimated
the bloom biomass near the coast. To achieve a more detailed understanding of the performance
of the standard MERIS L2 algal products for the region relative to the MPH algorithm, pixels were
extracted from the rectangular boxes drawn in fig. 2.5.1E, and scatter plots made (fig. 2.5.2). The
two areas were selected on the basis of the validity flags of the algal1 and algal2 products and on
biomass: the area for algal2 had higher biomass and covered the peak bloom area, while the area
for algal1 generally had chl-a < 25 mg m™3. For waters with chl-a < 25 mg m™3, the algal1 prod-
uct was found to be highly covariant (r* = 0.93) with the MPH algorithm estimates. However,
algal1 was consistently and significantly smaller than chl-a estimates from the MPH algorithm (fig.
2.5.2A). This either is a result of underestimates from the algal1 product, or due to limit of detec-
tion of the MPH algorithm, which is likely near 3.5 mg m™3. The findings suggests that algal1 may

underestimate chl-a in oligo/mesotrophic waters in the Benguela region.

In waters surrounding the peak area of the bloom, chl-a estimates from algal2 were highly co-
variant with those from the MPH algorithm (r*=0.88) when constrained to an upper range of 45
mg m 3 (fig. 2.5.2B). Although the algal2 product is generally smaller, the values estimated in the
range between 15 and 30 mgm ™3 are quite similar. For chl-a > 45 mgm™3, there was no correlation,
since algal2 has an upper training range of around 30 mg m ™3 (Schiller and Doerffer, 2005). For
chl-a concentrations above the upper limits of algal2, the estimates neatly occupied an expected po-
sition on the plot. Therefore the preliminary comparison results indicate that the standard MERIS

L2 products generally underestimate biomass in the southern Benguela during bloom conditions.
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Figure 2.5.2: Comparison between MERIS standard level 2 products, algall (panel A) and
algal2 (panel B) and chl-a derived from the MPH algorithm in the southern Benguela in a
large dinoflagellate bloom on 30 March 2005. The boxes in fig. 6 show where the data was
taken from within the MERIS scene.

These standard products may however be useful for providing estimates below the detection lim-
its of the MPH algorithm, which is around 3.5 mg m™3. An independent validation of the MPH
product in inland waters is presented in Chapter 6.

Further comparison between the MPH algorithm and other ocean colour algorithms was not
performed for the Benguela primarily because the algorithms are constrained to an upper limit near
30 mg chl-a m™3 which is generally too low for the region. Further testing of the MPH algorithm
using in situ data sets (such as NOMAD) is not feasible as these currently lack sufficiently high chl-a
data and the appropriate red/NIR reflectance data.

2.5.2 GLOBAL APPLICATION EXAMPLES

The MPH algorithm was applied to various well-known study areas in order to demonstrate its
cross-applicability for both cyanobacteria and floating algae detection in diverse environments.
The Baltic sea is frequently affected by very large cyano-blooms in summer months that form sur-
face scums, and these have often been observed using remote sensing (e.g. Reinart and Kutser,
2006). Fig 2.5.3A. shows the MPH algorithm applied to a MERIS RR scene on 17 July 2002 (note
cyano-mask alongside for comparison). The MPH algorithm correctly identifies the cyanobacte-
rial bloom which according to Reinart and Kutser (2006) are most likely Aphanizomenon flos-aquae,
Nodularia spumigena, or Dolichospermum circinale. This demonstrates the cyano-flag correctly iden-
tifies buoyant marine species of cyanobacteria in the Baltic sea. The range of chl-a values estimated
by the algorithm are also within the ranges of those estimated by local algorithms for blooms oc-
curring in the same month (Reinart and Kutser, 2006). Therefore initial results from the MPH
algorithm indicates that it might be well-suited for application with cyano-blooms in the Baltic

Sea, where conventional algorithms most often often fail (Reinart and Kutser, 2006).
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Figure 2.5.3: Global examples of the MPH algorithm in A) the Baltic sea during and intense
cyanobacteria bloom (likely Aphanizomenon flos-aquae), B) Lake Taihu (M. aeruginosa), and
C) Lake Victoria (unidentified species). The corresponding images alongside show the cyano-
flag (white pixels equals cyanobacteria, black pixels equals other water).

Lake Taihu in China is well known for outbreaks of severe Microcystis spp. blooms that accu-
mulate in dense cyano-scums on the surface. These have recently been observed in a ten year time
series using MODIS and the FAI (Hu et al,, 2010a). Initial results from the MPH algorithm in
Lake Taihu show that it correctly identifies these cyano-blooms and scums, reproducing the ob-
servations of Hu et al. (2010a) (fig. 2.5.3B). This result is expected as the MPH algorithm is de-

rived from lakes with Microcystis spp. dominated assemblages similar to Lake Taihu. As can be
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seen in the south eastern parts of the Lake, the MPH algorithm also detected floating macrophyte
vegetation (magenta pixels). Macrophytes are known to occur in this region of the Lake and are
most likely Potamogeton maackianus (pondweed) or Vallisneria natans (eelgrass) which are emer-
gent and floating-leaf species (Qin et al., 2007). A final example is given from Lake Victoria, which
experiences severe eutrophication and cyano-dominance in some regions (Lung’ayia etal,, 2000).
Floating vegetation such as waterhyacinth (E. crassipes), Nile Cabbage (Pistia stratiotes), and wa-
ter lily (Nymphaea caerulea) are also present in the Lake in standing crops (Cavalli et al., 2009).
Fig 2.5.3C shows a MERIS FR scene indicating a large bloom identified as cyanobacteria, most
likely Microcystis or Dolichospermum (see Lung ayia et al., 2000), extending into the central parts
of the Lake, along with cyano-scum accumulations along the shoreline. This example, together
with those above, demonstrate how the MPH algorithm and cyano-flag might be used for global

monitoring of trophic status and cyano-blooms.
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2.5.3 CONCLUSION

In conclusion, the MPH algorithm provides a new and efficient method for trophic status deter-
mination, cyano-bloom monitoring and floating vegetation detection in inland and coastal waters.
The findings demonstrate that chl-a estimates for trophic status determination might be given with
considerable accuracy using a top-of-atmosphere approach by taking advantage of fluorescence and
backscatter/absorption related features in the red/NIR wavelengths of MERIS. These features are
clearly discernible in the TOA MERIS reflectance data and the baseline-subtraction calculation
of the MPH algorithm provides an effective normalisation of atmospheric effects, assuming that
aerosol effects are relatively constant between the 664 and 885 nm bands. Therefore for broad
trophic status assessment, simple Rayleigh atmospheric corrections are likely sufficient and avoid
the more complicated and error-prone aerosol atmospheric corrections in turbid case II waters.
The advantages of a TOA-type approach are also evident in improved processing times and sim-
pler implementation for operational monitoring systems.

The MPH variable is suitable for distinguishing eukaryotic phytoplankton from vacuolate cyanobac-
teria species. Large differences were observed in MPH magnitude between assemblages dom-
inated by prokaryotic cyanobacteria Microcystis spp. (Zeekoevlei/Hartbeespoort) and eukary-
otic dinoflagellates/diatoms (Benguela/ Loskop). These differences allow for the discrimination of
these phytoplankton types/classes in high biomass circumstances based on the magnitude of the
MPH variable. This is substantiated by evidence that Microcystis dominant cyano-dominant waters
have considerably higher backscatter per unit chl-a leading to the increased magnitude of the MPH
variable. This finding indicates the potential for ‘tuning’ of the MPH algorithm for detecting var-
ious phytoplankton classes on the basis of species-specific chl-a specific backscatter relationships
as shown in Chapter 4 section 4.4.2 (¢f Whitmire et al,, 2010). Radiative transfer modeling studies
will undoubtedly be valuable in confirming and further substantiating this finding, providing that
appropriate parameterisations of the the relevant phase functions and IOPs are available (see Chap-
ters 4 and 5). In addition, a flagging method was defined which allows cyano-dominant waters to
be distinguished from other blooms on the basis of cyanobacteria-specific spectral pigmentation
features related to enhanced SIPF and reduced SICF. Initial results from cases with coincident in
situ observations, and examples from global applications, suggest that this flag is a robust method
for detecting high-biomass occurrences of cyano-blooms (chl-a > 20 mg m™3). Further applica-
tion of this technique, such as that presented in Chapter 6 of this study, will undoubtedly have
significant implications for cyanobacteria-oriented remote sensing warning systems, as well as for
frequency/risk analysis applications and bloom phenology.

The uncertainties related to the chl-a algorithms originate from the discreet-point sampling er-
ror, chl-a quantification methods, and atmospheric and sub-pixel variability. Notwithstanding the
relatively small magnitudes of these errors, chl-a estimates are likely confident to within 3.5 mgm™3
for chl-a < 30 mgm™3, and within 50 mg m 3 for chl-a < 500 mg m 3. Detection of cyano-bloom

initiation remains challenging due to a lack of appropriate signal caused by a relative absence of
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SICF (chl-a < 30 mg m™*). Low-biomass waters having high mineral content also present a chal-
lenge due to interference with the SICF signal (Mckee et al., 2007). Therefore, the MPH algorithm
is probably best suited for application in waters where phytoplankton is the dominant contributor
to the bulk IOPs.

The MPH algorithm presents a new approach for empirical algorithms used to estimate chl-a
in inland and coastal waters. This is one of only a few studies showing that empirical chl-a mea-
surements are significantly correlated with a variable derived from top-of-atmosphere MERIS re-
flectance data (see also Giardino et al., 2005, Matthews et al., 2010). Furthermore, this is the first
study where Microcystis cyano-dominant blooms have conclusively been distinguished from other
high biomass eukaryote-dominant waters on the basis of enhanced chl-a specific backscatter as
observed in the 709 nm peak in MERIS band 9 and accessory phycobilipigment features (but
see also Wynne et al,, 2008). This finding has significant implications for empirical and model-
based algorithms aimed at identifying phytoplankton type in eutrophic waters from space. A new
technique presented for cyanobacteria detection based on cyanobacteria-specific spectral pigmen-
tation and fluorescence features should provide more information on the extent and severity of
cyano-dominance in affected waters. Further work is needed to assess how the MPH algorithm
compares with alternative algorithms such as NIR-red band ratio algorithms designed for high-
biomass waters. In conclusion, the MPH algorithm provides a substantial opportunity for water
quality monitoring systems aimed at filling information gaps. The routine generation of these prod-
ucts will have a broad range of conservation, trend analysis, status determination, quality auditing

and ecosystem analysis applications.
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This chapter is based on work published as:
Matthews, M. W, and Bernard, S. (2013). Characterizing the Absorption Properties for Remote Sensing of
Three Small Optically-Diverse South African Reservoirs. Remote Sensing, 5, 4370-4404.

Characterising the absorption properties for
remote sensing of three small optically-diverse

South African reservoirs

Microcystis aeruginosa surface scum photographed in Hartbeespoort Dam, October 2010.
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Abstract

Characterising the specific inherent optical properties (SIOPs) of water constituents
is fundamental to remote sensing applications. Therefore, this Chapter presents the ab-
sorption properties of phytoplankton, gelbstoff, and tripton for three small, optically-
diverse South African inland waters. The three reservoirs, Hartbeespoort, Loskop and
Theewaterskloof, are challenging for remote sensing due to differences in phytoplankton
assemblage and the considerable range of constituent concentrations. Relationships be-
tween the absorption properties and biogeophysical parameters chlorophyll-a (chl-a),
TChl (chl-a plus pheopigments), seston, minerals and tripton are established. The value
determined for the mass-specific tripton absorption coefficient at 442 nm, a},(442),
ranged from 0.024 to 0.263 m* g~ *. The value of the TChl specific phytoplankton ab-
sorption coefficient (a;) was strongly influenced by phytoplankton species, size, acces-
sory pigmentation and biomass. ag (440) ranged from 0.056 to 0.018 m* mg ™" in olig-
otrophic to hypertrophic waters. The positive relationship between cell size and trophic
state observed in open-ocean waters was violated by significant small cyanobacterial
populations. The phycocyanin specific phytoplankton absorption at 620 nm, aj,.(620),
was determined as 0.007 m* g™ in a M. aeruginosa bloom. Chl-a was a better indicator
of phytoplankton biomass than PC in surface scums due to reduced accessory pigment
production. Absorption budgets demonstrate that monospecific blooms of M. aerugi-
nosa and C. hirundinella may be treated as "cultures”, removing some complexities for
remote sensing applications. However the majority of the water is optically-complex re-
quiring the usage of all the SIOPs derived here for remote sensing applications. These re-
sults contribute toward a better understanding of IOPs and remote sensing applications
in hypertrophic inland waters. The SIOPs may be used for developing remote sensing
algorithms for the detection of biogeophysical parameters including chl-a, suspended
matter, tripton and gelbstoff, and in advanced remote sensing studies for phytoplankton

type detection.

INTRODUCTION

KNOWLEDGE OF THE INHERENT OPTICAL PROPERTIES (IOPs) including the absorption of phyto-
plankton, gelbstoff (or chromophoric dissolved organic matter), and tripton (non-living minerals
and detritus) is critical to water remote sensing. IOPs are required for remote sensing algorithm de-
velopment, and for physically based bio-optical models simulating the behaviour of light in water.
Physically-based water constituent retrieval remote sensing algorithms, especially those targeting
specific water types or classes, rely heavily on IOPs, as do biogeochemical models. As a result,

much attention has been given to determining the variability in absorption properties of coastal
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and open-ocean marine waters (e.g. Babin et al., 2003, Bricaud et al., 2010, 1995 ). Recent studies
have also sought to characterise the absorption properties of optically-complex inland and estuar-
ine waters (e.g. Belzile et al., 2004, Binding et al., 2008, Campbell et al,, 2010, Le et al., 2013, Perkins
et al, 2009, Zhang et al., 2009b). However, there is an ongoing need to investigate the variability
that might be encountered across these diverse systems, especially those that are hypertrophic. This
poses an ongoing challenge for satellite-based remote sensing applications aimed at characterizing
the phenology and ecological state of earth’s precious and vulnerable freshwaters.

In water-scarce South Africa, man-made reservoirs provide an essential source of potable water
to a growing urban population. Widespread eutrophication and cyanobacterial blooms have de-
graded water quality in many of these reservoirs, posing a potential health threat to millions of con-
sumers, as well as for industrial and commercial users (Oberholster et al., 2005 ). Data on the opti-
cal characteristics and variability of these reservoirs is lacking, hindering present and future mon-
itoring efforts using remote sensing. This Chapter aims to describe the variability in absorption
properties of phytoplankton, gelbstoff and tripton of three optically-diverse South African reser-
voirs. It describes the relationships between absorption and biogeophysical variables, chl-a, seston
(total suspended solids) and mineral dry weight. The chl-a specific absorption coefficients (af;)
are determined for the diverse phytoplankton assemblages, and discussed with reference to typi-
cal values reported in case I waters. The variability of the phycocyanin (PC) specific absorption
at 620 nm, a,, .(620), used in semi-analytical algorithms aimed at detection of PC (e.g. Ruizverdu
etal, 2008, Simis et al., 2005 ), is also determined for cyanobacterial blooms and in surface scums of
Microcystis aeruginosa. The mass-specific tripton absorption coefficients (a;,) are determined using
a modified technique and the results compared to reported values from inland and coastal waters.
Finally, absorption budgets are presented for each of the reservoirs. The aims of the Chapter are
to provide a thorough description of the range of variability in absorption properties that might
typically be encountered in South African inland waters, and to provide IOPs for use in remote
sensing radiative transfer studies and physically-based water constituent retrieval algorithms (see

Chapters 4 and ).

3.2 METHODS

3.2.1 STUDY AREAS AND SAMPLING STRATEGY

The three study areas, Hartbeespoort, Loskop and Theewaterskloof reservoirs, were chosen in or-
der to capture some of the diverse range of water types and blooms occurring in South African
inland waters (Fig. 3.2.1). Sampling campaigns were undertaken at each of the lakes for a three
week period: at Hartbeespoort in October 2010, at Loskop in July/August 2011 and at Theewater-
skloof in April 2012. Sample points were located so as to capture the diversity of water conditions
occurring in each of the reservoirs. Surface water samples were collected in 11 plastic containers or

in 5 1 opaque plastic buckets following thorough rinsing with lake water. Every effort was made to
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avoid disturbing the dense aggregations of cyanobacteria on the water surface (when present) by
gently collecting water into containers held horizontally. Samples were kept in the dark and on ice
until analysis. Water clarity was measured using a secchi disk, z4, using the mean of the depth at

which the disk disappeared and then re-appeared.
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Figure 3.2.1: The geographical location and shapes of the three reservoirs Loskop, Hart-
beespoort and Theewaterskloof. Sample points are indicated by labeled dots (see text for de-
tails).

Of the three study areas Hartbeespoort is the most extensively studied followed by Loskop while
Theewaterskloof is almost undescribed in scientific literature. Detailed information on the limnol-
ogy and phytoplankton dynamics of Hartbeespoort is available (e.g. Scott et al., 1977, van Ginkel
and Silberbauer, 2007, Zohary et al.,, 1996). As discussed in Chapter 2, it is one of the most pro-
ductive reservoirs in the world (Zohary, 1985). Measurements of its optical properties however
are limited to light attenuation (Robarts, 1984, Robarts and Zohary, 1992). The water quality and
phytoplankton assemblage of Loskop has previously been described (Dabrowski, 2012, Oberhol-
ster et al., 2010, Walmsley and Bruwer, 1980). Situated on the Olifants River, Loskop has very
diverse water types due to its longitudinal zonation. However, information on its light environ-

ment is limited to Secchi disk. The third reservoir called Theewaterskloof is located in the western
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winter rainfall region of South Africa, and is one of the primary water supply reservoirs for the Cape
Town region through an inter-basin transfer scheme. The reservoir is divided into two basins by a
narrow channel crossed by a bridge, the western basin contains the inlet from the Sonderend River
and the eastern basin the dam wall. Despite its great importance as a potable water supply, appears

to be no citeable information on its limnology, phytoplankton assemblage, or light environment.

3.2.2 PHYTOPLANKTON PIGMENTS

Water samples were filtered under low pressure (< 10 mm mercury pressure) through Whatmann
GF/F filters on the same day as collection. The concentrations of chl-a and pheopigments were
determined spectrophotometrically using an extraction solution of 90% boiling ethanol after Sar-
tory and Grobbelaar (1984), due to the improved extraction efficiency of ethanol with freshwa-
ter phytoplankton assemblages containing cyanobacteria. TChl is defined as the sum of chl-a and
pheopigments. Phycocyanin (PC) and allo-phycocyanin (APC) pigments were measured when
cyanobacteria made up a significant portion of the phytoplankton assemblage. Cyanobacteria have
very resistant cell walls that must be broken to release the water soluble phycobiliproteins. Various
methods may be used to break the cell walls including freezing and thawing (Sarada et al,, 1999),
enzymatic attack (Stewart and Farmer, 1984), osmotic shock (Wyman and Fay, 1986), attack by N
fixing bacteria (Zhu et al., 2007), acid, nitrogen cavitation and french press (see Viskari and Colyer,
2003, Zhu et al,, 2007, for details). However the most efficient methods appear to be freeze-thaw
and enzymatic attack (Zhu et al,, 2007). Therefore a combination of these techniques was used
after Beutler (2003 ) to optimise extraction efficiency and reduce the amount of time required for
analysis in the field. Filter papers were frozen for at least 24 hours in 15 ml screw capped tubes. If
samples were being transported, they were stored in liquid nitrogen and then at-70°. After thawing,
an extraction solution of 0.25 M Trizma Base, 10 mM di-sodium EDTA and 2 mg ml™* lysozyme
was added. After grinding with a glass rod, the filter paper was incubated in the dark for 2 h at 37°
and then stored in the cold for at least 20 h to allow for extraction. The samples were then diluted
with Milli-Q water and centrifuged at 3600 g for 15 min. to reduce turbidity. The supernatant was
initially filtered through a 0.2 ym pore size membrane filter, however this may interfere with the
phycobiliproteins so subsequent analyses did not filter the supernatant (Simis, 2013). The sample
was read in the spectrophotometer using 1 cm matched quartz cuvettes using the extraction solu-
tion as reference, and PC concentration calculated according to Bennett and Bogorad (1973). All

pigment analysis were done in triplicate using the mean as the final value.

3.2.3 SESTON, MINERALS AND TRIPTON CONCENTRATIONS

Seston dry mass was determined using pre-ashed Whatmann GF/F filter papers following the gravi-
metric technique (Environmental Protection Agency, 1983 ). The inorganic component (here re-

ferred to as minerals) was determined by burning the filter pads in a muffle furnace at 500° and
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re-weighing. All analyses were done in triplicate using the mean as the final value.

Tripton corresponds to the de-pigmented matter measured by the quantitative filter technique
(QFT, see below). However, it is difficult to separate out the living phytoplankton component of
seston in order to measure tripton dry mass. Determination of a;, is useful for bio-optical mod-
els because it allows for the particulate detrital and mineral components to be handled simulta-
neously, and separately from living phytoplankton. Seston dry mass might be partitioned most
simply into its tripton and phytoplankton components according to: tripton = seston — X chla,
where f is a conversion factor to estimate phytoplankton dry mass from chl-a. Most studies using
this technique assume a constant value of f most often equal to 0.07 g mg " (e.g. Dekker et al,,
2001, Giardino et al., 2007, Hoogenboom et al., 1998). However, the value of f varies widely in
nature according to the intracellular chl-a concentration which is dependent on the species, and
light and nutrient environment. For cyanobacteria P. hollandica and O. limnetica cultured under
a range of light and nutrient conditions, Gons et al. (1992) determined the value of f ranged be-
tween 0.02 — 0.3 gmg *, mean = 0.046 gmg *. Zhang et al. (20092) determined a value of 0.09 g
mg ' for an assemblage dominated by Microcystis and Scenedesmus in lake Taihu, China. Desortova
(1981) determined that the chl-a content per unit fresh phytoplankton biomass for various lakes
was between 0.14-3.41% which corresponds to f§ of 0.029—0.71 g mg™*. The range of variability
was primarily related to seasonal variation in solar radiation, with larger values being attributed to
low-light conditions (winter months). Natural populations of individual cells of various species
have mean values ranging from 0.0496-0.21 gmg " (calculated from table 1.3 in Reynolds, 2006).

In this study, values of  were determined by investigating the ratio of phytoplankton to de-
tritus, R,y. In steady-state conditions (ie. loss rate & growth rate), R, should be constant irre-
spective of trophic state with a value near 0.3 (Gons et al,, 1992). This is in agreement with re-
ported values of R,4 in lakes which are typically between 20 and 35% (e.g. Van Valkenburg et al.,
1978, Wen, 1992). In non-steady state conditions R,q may vary: however its value is expected
to be less than one for almost all growth conditions (Gons et al,, 1992). The existence or non-
existence of steady-state conditions was determined by examining variability of the chl-a:Seston
ratio in time. For conditions deemed to be in steady-state, values for § were selected where the
corresponding R, values were near to 0.3. On average, phytoplankton contain 10% mineral con-
tent (ash dry mass) (Reynolds, 2006). Therefore detrital dry weight was calculated according to:
detritus = seston — 0.9 X minerals — B X chla. R,q was calculated using the detrital and phyto-
plankton dry mass calculated for a range of ff values. Since ash dry weight was not determined in

Hartbeespoort, minerals were assumed to be zero, which is probably a reasonable assumption.

3.2.4 ABSORPTION COEFFICIENTS OF PARTICULATE, PIGMENTED AND DISSOLVED SUBSTANCES

The QFT was used to determine the absorption of total particulate matter (seston) and de-pigmented
matter (tripton) after Mitchell et al. (2003). Water samples were stored in the dark and analysed

on the same day as collection. The sample was filtered under low vacuum pressure (< 10 mm mer-
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cury pressure) through a pre-ashed Whatman GF/F filter paper pre-washed with Milli-Q water,
adjusting the volume according to the turbidity of the sample. In cases of very high biomass such
as Hartbeespoort (chl-a > 10 0oo mg m™?), as little as 2.5 ml was filtered, while for chl-a < 1 mg
m 3 in Loskop, 1 1 was filtered to obtain sufficient material on the filter. Blank filter papers were
treated identically to the sample, by simultaneously filtering the same volume of Milli-Q water.
Care was taken to not run the blank filters dry. Filter papers were kept in labeled petri dishes with

a drop of water until analysis to ensure hydration.

The optical density (OD) of the particulate and blank filter paper between 350 and 850 nm was
measured using a Shimadzu UV-2501 spectrophotometer using an ISR-2200 integrating sphere.
The mean OD of the filter relative to the blank was near o.5 for all samples. In the case of Hart-
beespoort however, the value was unavoidably higher owing to the extremely high biomass. The
mean OD of the blank measurements was subtracted from the particulate OD measurements and
the absorption calculated using a pathlength amplification factor of 2 (Roesler, 1998). A null sub-
traction was performed at the highest wavelength of measurement (850 nm) as the assumption
of no absorption from particulate matter at 750 nm does not hold in highly turbid inland waters.
Duplicate particulate absorption measurements were performed for each sample, using the mean

of the two spectra as the final value.

a; was determined by two methods, sodium hypochlorite (NaClO) oxidation and, in the case
of Theewaterskloof, boiling methanol extraction. Both of these techniques have been used for
freshwater samples (e.g. Binding et al., 2008, Zhang et al., 2008), but little information exists on
what quantitative errors each of these methods might introduce. Since both methods remove non-
chlorophyllous pigments (carotenoids and pheopigments), the phytoplankton absorption will tend
to be overestimated. The NaClO technique has two advantages in that it bleaches the water soluble
phycobilipigments and resistant cells (e.g. chlorophytes), and it may be performed more rapidly
in the field (Ferrari and Tassan, 1999). However, there is some evidence to suggest that NaClO
treatment of samples with high dissolved organic matter may cause bleaching of colloidal/particle-
bound organic matter leading to overestimates of phytoplankton absorption in the blue (Binding
et al,, 2008). Furthermore, NaClO is unsuitable for waters with high abundance of heterotrophic
bacteria due to the production of a yellow cytochrome byproduct deposited on the filter (Ferrari
and Tassan, 1998). Techniques using organic solvents methanol or ethanol (e.g. Simis et al., 2005)
might avoid these effects, although it is uncertain to what degree phycobilipigments are removed
even when related absorption peaks are not visible in the absorption spectrum. Measurements
were performed using both techniques in order to quantify and elucidate these errors. Complete
pigment bleaching/extraction was assessed by absence of the 675 nm chl-a absorption peak. In
cases of insufficient bleaching/extraction, the filter paper was gently subjected to further bleach-
ing/extraction until the 675 nm peak disappeared. The filters were thoroughly rinsed with Milli-Q_
water to remove contamination by NaClO in order to perform readings < 400 nm. Blank filter

papers were treated identically to samples. The mean bleached blank OD was subtracted from the
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bleached particulate OD to calculate the tripton absorption. The tripton absorption curves were
fitted to an exponential function (Bricaud et al., 1981) and the slope coefficient, S;,, was computed
using a reference wavelength of 442 nm.

The phytoplankton absorption component was then computed as a, = a, — ay,. The specific
absorption coefficients, a; and aj,, were determined by dividing a, and a;, by the concentration
of TChl and tripton, respectively. In order to calculate the PC specific absorption coefhicient,
a;C(ézo), a correction needs to be applied to a,(620) in order to remove the effect of residual
chl-a absorption, termed a.,;(620). Simis et al. (2005) determined the value of a.,;(620) from
a,(665) using a ratio term, e=0.24. The absorption exclusively due to PC is then calculated by
pc(620) = a,(620) — € X a,(665). a;c(620) is then calculated by a,,.(620)/PC. The value of ¢
determined by Simis et al. (2005 ) is generally suitable for use in cyanobacteria-dominated waters,
and therefore is used here. No attempt was made to correct for algae containing other pigments
influencing absorption near 665 and 620 nm (e.g. Simis et al., 2007). The absorbance due to gelb-
stoff, a,, was read between 340 and 750 nm in the spectrophotometer using matched 10 cm quartz
cuvettes using room temperature Milli-Q water as reference. A null-point correction at 750 nm was
implemented and absorption calculated according to Mitchell et al. (2003 ). The curves were fitted
to an exponential function (Bricaud et al., 198 1) between 350 and 500 nm and the slope coefficient,

Sg, was computed using a reference wavelength of 442 nm.

3.3 RESULTS AND DISCUSSION

3.3.1 BIOGEOCHEMISTRY AND PHYTOPLANKTON COMPOSITION

There was extremely large variability in biogeochemical and optical parameters between and within
the three systems studied (table 3.3.1). Fig. 3.3.1 shows scatter plots illustrating this variability,
and the correlation coeflicients for the entire dataset are shown in table 3.3.2. Chl-a and seston
were highly correlated (r = 0.92), with concentrations varying over six and five orders of magni-
tude, respectively (fig. 3.3.1A). The extremely high chl-a values > 1000 mg m™* were measured in
surface scum conditions in Hartbeespoort. The greatest trophic range was found in Loskop with
chl-a varying from o.5 to 500 mg m™3, while Theewaterskloof was the least variable. The organic
component of seston was highly correlated with chl-a (r = 0.8s, fig. 3.3.1B). Weak correlations
between gelbstoff absorption at 442 nm, a4(442), and chl-a and seston were apparent (r = 0.63
and o.54, respectively, fig. 3.3.1C,D). However, the considerable scatter implies that the relation-
ship is reservoir-specific and that a is largely controlled by catchment-related factors rather than
phytoplankton biomass or seston (Kirk, 1994). Water clarity (z,5) was inversely correlated to ses-
ton (r = —o0.43) and its mineral and organic components, and phytoplankton pigments (chl-a,

r = —o.27,fig. 3.3.1EF).
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Figure 3.3.1: Scatterplots for A) seston versus chl-a, B) organic matter versus chl-a, C)
ag(442) versus chl-a, D) ag(442) versus seston, E) zy versus seston, and F) zy versus chl-a.
Note logarithmic scales.

Table 3.3.1: Variability in biogeophysical and optical parameters for each reservoir.

Chl-a PC Seston Minerals Zgg TChl ag(442 nm) Sg ay (442 nm) agr (442 nm) Str ag (442 nm)
mgm 3 mgm™ 3 gm 3 gm 3 cm mgm ™3 m™ ! nm~ ' m~ ! m~* nm ™' m~ !
Hartbeespoort
Min. 33.0 84.3 6.0 1.0 38.9 0.63 0.014 2.03 0.07 0.0092 1.73
Max. 25978.3 43143.9 2100.0 201.0 28466.6 4.13 0.021 456.24 1.74 0.0098 455.32
Mean 3872.6 4462.9 573.1 61.9 4260.8 1.55 0.017 87.48 0.51 0.0095 86.98
St. dev. 5§703.3 8225.8 685.4 51.8 6208.0 0.77 0.002 133.16 0.47 0.0004 132.83
Median 1503.3 1190.7 225.0 61.0 1599.3 1.30 0.017 27.97 0.39 0.0095 27.61
N 39 39 35 39 39 34 34 19 19 2 19
Loskop
Min. 0.5 25.1 0.9 0.0 37.5 1.3 0.75 0.013 0.16 o.10 0.0078 0.0§
Max. 512.9 73.5 48.9 5.7 870.0 856.3 1.87 0.022 12.58 1.57 0.0126 11.12
Mean 86.7 49.3 9.5 1.5 263.5 151.8 1.11 0.017 2.07 0.53 0.0103 1.56
St. dev 139.5 34.2 11.3 1.5 203.8 245.3 0.24 0.002 2.72 0.39 0.0013 2.43
Median 10.1 49.3 3.3 0.9 224.0 20.6 1.07 0.017 0.62 0.42 0.0102 0.29
N 48 2 55 55 56 49 57 57 57 57 57 56
Theewaterskloof

Min. 5.1 8.1 7.1 3.2 45.0 6.9 1.22 0.012 1.13 0.51 0.0084 0.41
Max. 69.7 70.3 29.1 22.8 108.0 118.4 2.49 0.015 3.65 2.26 0.0130 2.43
Mean 22.2 20.4 16.4 9.3 68.2 34.7 1.85 0.014 2.07 1.18 0.0098 0.89
St. dev. 16.3 15.1 6.0 4.6 17.7 25.5 0.45 0.001 0.72 0.44 0.0011 0.49
Median 16.3 14.9 16.4 8.0 66.0 23.0 1.86 0.014 2.18 1.05 0.009§ 0.74
N 33 19 32 32 33 33 19 19 19 19 19 19

The phytoplankton species composition is shown in fig. 3.3.2 and table 3.3.3. In Hartbeespoort

M. aeruginosa composed more than 9o% of the phytoplankton assemblage. Bright green surface

accumulations were present over most of the lake surface area. The concentration of chl-a and
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Table 3.3.2: The Pearson correlation coefficient between various variables. Note that a para-
metric statistic was used although the variables were non-normally distributed according to
the Shapiro-Wilks test.

chl-a  PC  Seston Minerals Organicmatter zy  dg(440) TChl

chl-a 1

PC 0.86 1.00

Seston 0.92  0.68 1.00

Minerals -0.10 -0.21 0.57 1.00

Organic matter  0.85 0.88 0.88 0.13 1.00

Zsd -0.27 -0.43  -0.31 -0.52 -0.47 1.00

ag(440) 0.63  0.67 0.54 0.76 0.34 -0.43 1.00

TChl 1.00 0.87 0.92 -0.12 0.84 -0.28 0.64 1.00

phycocyanin pigments were extremely high (up to 26 0oo and 43 0oo mg m ™3, respectively). In
Loskop, the dinoflagellate Ceratium hirundinella is dominant throughout the reservoir in terms of
biovolume, although cyanobacteria (in isolated blooms) and other species were also abundant (fig.
3.3.2B, table 3.3.3). Working upstream, the main basin (point MB) is typically oligotrophic (chl-a
< 1 mgm~?) and very clear with a mixed population of diatoms, chlorophytes and dinoflagellates.
The lacustrine zone (point LS) is oligotrophic (chl-a < 10 mg m™?) with slightly decreased water
clarity. The transitional zone where a bio-optical buoy was moored (point BY) is more variable
due to mixing (1 < chl-a<3o mg m~3). A dense bloom of C. hirundinella was present at point
CT turning the water dark brown, with chl-a values in excess of 200 mg m™3. This species which
commonly occurs in South African reservoirs is a nuisance for water treatment (Hart and Wragg,
2009, van Ginkel et al,, 2001). A emphM. aeruginosa bloom was present further upstream at point
MC. In summer, as water temperatures rise, the cyanobacteria become more abundant and blooms
extend downstream towards the transitional zone (Oberholster et al., 2010). Therefore, it appears
that M. aeruginosa and C. hirundinella are competing species in this reservoir.Ppoint RI at the inflow

of the Olifants River is clear with chlorophytes and diatoms being present.

The water clarity in Theewaterskloof was more turbid and typically contained a phytoplankton
assemblage of mixed dinoflagellate], cyanobacteria and diatom species (table 3.3.3) and a high
mineralic component of dry weight (table 3.3.1). The reservoir is affected by strong prevailing SE
and NW winds (gusts up to 7.5 m s~* were measured) which means it is generally well-mixed.
Blooms of filamentous cyanobacteria Anabaena ucrainica and a high abundance of diatom species,
in particular Aulacoseira ambigua and Asterionella formosa, were characteristic for the reservoir. The
high mineralic component of dry weight might be related to the presence of these diatom species,
which may contain >40% ash weight of dry weight (Reynolds, 2006). A general pattern of in-
creasing turbidity and phytoplankton biomass was observed from the eastern towards the western

basin, near the inflow of the Sonderend River. The eastern basin was oligo/mesotrophic while the
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Figure 3.3.2: Mean biovolume (left bars) and abundance (center bars) of phytoplankton by

group, and zy (right bars) for sample points in A) Theewaterskloof and B) Loskop. The leg-

end is the same in A and B. Cyanophycea count for Loskop point MC has been scaled by fac-
tor of 0.1. z, is also scaled by factor 0.1 in B.

Table 3.3.3: Predominant phytoplankton species present in this study (>5000 cells I7*). HB
= Hartbeespoort, LK = Loskop, TW = Theewaterskloof, p = present.

HB LK TW HB LK TW
Bacillariophyceae Scenedesmus acutiformis P
Melosira varians P Cyanophyceae
Fragililaria crotonensis P Microcystis aeruginosa P P P
Aulacoseira granulate P Anabaena ucrainica P
Diatoma vulgaris P Dinophyceae
Asterionella formosa p  Ceratium hirundinella P
Aulacoseira ambigua p  Peridium bipes P
Navicula capitatoradiata p  Sphaerodinium fimbriatum P
Chlorophyceae Euglenophyceae
Coelastrum reticulatum P Trachelomonas volvocina P
Pandorina morum p Cryptophyceae
Staurastrum paradoxum p Cryptomonas ovate p

western half of the reservoir was meso/eutrophic. A high biomass bloom consisting of cyanobac-
teria Anabaena ucrainica and the large-celled dinoflagellate Sphaerodinium fimbriatum which were

co-dominant in terms of biovolume was present in the western basin.

3.3.2 ABSORPTION BY GELBSTOFF

In the three reservoirs absorption by gelbstoff at 442 nm varied between 0.63 to 4.13 m ™" (table
3.3.1). Despite its large trophic gradient, Loskop had the most narrow range from 0.75 to 1.87 m ™.
Therefore it appears that a; was largely independent of trophic status. The widest range of values
were found in Hartbeespoort (0.63 to 4.13 m™*), which was likely associated with the extremely

variable cyanobacterial biomass. Theewaterskloof had the highest average value of 1.9 m™* which
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is consistent with brackish waters which are characteristic of rivers in the Cape region. The mea-
sured absorption curves were generally consistent with an exponential function (straight lines in
fig. 3.3.3A). The values determined for of the slope coefficient, Sg, ranged between 0.012 and 0.022
nm~’, within that reported in coastal (Babin et al., 2003 ) and other inland waters (Kirk, 1994). The
mean value of 0.017 nm™" was identical for Loskop and Hartbeespoort, while that for Theewater-
skloof was 0.014 nm™". An inverse relationship was present between ag(442) and S, (fig. 3.3.3B)

with greater variability associated with smaller values in agreement with the findings of Babin et al.

(2003).
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Figure 3.3.3: A) Gelbstoff absorption versus wavelength with log-scale y axis. B) ag(442)
versus the exponential slope coefficient Sg. The legend colours are the same in A and B.

3.3.3 ABSORPTION BY SESTON

Fig. 3.3.4 shows the measured particulate absorption spectra which varied over more than four or-
ders of magnitude. Extremely high values were measured in surface scums in Hartbeespoort (table
3.3.1, fig. 3.3.4A). The spectral shapes indicate that the contribution of phytoplankton to a, was in
these cases overwhelming. The data from Loskop were divided into two groups: those from the
high biomass C. hirundinella bloom at sampling point CT (fig. 3.3.4B); and those from other sam-
ple points (fig. 3.3.4C). The spectra from point CT were dominated by phytoplankon absorption,
while the remainder had exponential shapes which is evidence of a relatively larger influence by
tripton. a, spectra measured in Theewaterskloof (fig. 3.3.4C) appeared to be influenced by signif-
icant contributions of both tripton and phytoplankton and had exponential shapes at wavelengths
< §00 nm.

Total particulate absorption was extremely variable in Hartbeespoort and Loskop (0.16to 456.24
m ) but was more consistent in Theewaterskloof (1.13 to 3.65 m™*). ap (442) was highly corre-
lated with seston and chl-a (fig. 3.3.5). The data were fitted using a straight line with null point in-

tercept (y = ax). Therelationship a,(442) = 0.23 X seston was determined for Loskop (r* = 0.91,
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Figure 3.3.4: Seston absorption spectra measured in A) Hartbeespoort (gray lines scaled by
0.1 to facilitate comparison), B) Loskop for a,(442) > 2 m™, and C) Theewaterskloof (black
lines) and Loskop a,(442) < 2 m™ (gray lines).

Standard Error=1.03,N=56), similar to that determined for Theewaterskloof, ap (442) = o.12Xseston
(r* = 0.97, SE=0.38, N=19). For combined Theewaterskloof and Loskop data the relationship
was a, (442) = o.19xseston (r* = 0.85, SE=1.22,N=75). a, (442) was more correlated with chl-a
in Hartbeespoort according to: a, (442) = o0.026%chl-a (r* = 0.82,SE = 67.9,N = 19). The
combined dataset was described by a, (442) = o.15Xseston (r* = 0.68, SE=40.25, N=91), and
a, (442) = o0.026xchl-a (r» = 0.82, SE=29.9, N=94). The significance of the correlations were

affected by outliers in the data mainly from Hartbeespoort.
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Figure 3.3.5: Seston absorption at 442 nm versus A) seston showing linear fits for Loskop (-
-), Theewaterskloof (--), and the combined data (=), and B) chl-a showing the linear fit for
Hartbeespoort (—). Note log-scales.

3.3.4 ABSORPTION BY TRIPTON

A comparison between absorption coeflicients measured using hot methanol extraction and the

NaClO bleaching method is shown in fig. 3.3.6. The differences in magnitude of a, in fig. 3.3.6A
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were due only to the expected differences between duplicate samples. However, after normalising
at 410 nm (fig. 3.3.6B) considerable spectral differences became apparent. Despite that there was
no apparent residual PC absorption peak at 620 nm in the particulate absorption spectra, the ratio
spectrum revealed that residual phycobilipigments were present in the 500 to 650 nm region (fig.
3.3.6C). The hot methanol methodled to a 15 to 20% underestimate of ag (or overestimate of a, ) in
thisregion (fig. 3.3.6D). The shoulders near 420 and 650 nm are likely associated with residual chl-b
pigment from chlorophycea which also resulted in a +-4% difference in the 675 nm ch-a absorption
peak. Some evidence of bleaching of organic detritus by NaClO was visible from 700 to 750 nm
(although not < 440 nm), while both methods produced roughly equivalent results from 800 nm
onwards. In general the NaClO method appears to be better suited for use in inland waters as the

hot methanol technique under-extracted phycobili and chlorophyte pigments.
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Figure 3.3.6: Comparison between NaClO and hot methanol methods for determining a;A)
ap and a, determined using both methods for a single sample from Theewaterskloof. B) a,

and a; normalised at 410 nm. C) ag:ap ratio in percent. D) Percent difference between hot
methanol and NaClO determined a;:a, ratios shown in C.

Some examples of tripton absorption spectra are shown in fig. 3.3.7. In Theewaterskloof a strong
absorption feature was visible near 450 to 550 nm which is likely to be associated with iron oxides
(Estapaetal,, 2012); some residual chl-a absorption was also apparent (fig. 3.3.7A). Residual phy-
cobilipigment features were also clearly visible in some cases (fig. 3.3.7B). Therefore in Theewater-
skloof the exponential function was fitted between 360 and 500 nm in order to avoid errors at higher
wavelengths. There was an unusual flattening < 440 nm for some curves measured in Loskop at
sample point MB (fig. 3.3.7C), the origin of which is unknown (see similar feature in Baltic spectra
in Babin et al., 2003 ). For these data, an exponential function fitted between 440-600 nm was used
to calculate S;,. Absorption shoulders associated with iron oxide were also sometimes visible in
Loskop (fig. 3.3.7D). In Hartbeespoort, bleaching of heterotrophic bacteria known to be present

in in hypertrophic lakes in high abundance (Sommaruga and Robarts, 1997), caused unusually
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steep slopes <450 nm (fig. 3.3.7E). All but two of the measured a;, spectra in Hartbeespoort were
contaminated by this effect. Therefore, S;, could only be computed for two uncontaminated sam-
ples in Hartbeespoort, which also displayed some iron oxide effects (fig. 3.3.7F). In order to facil-
itate the calculation of phytoplankton absorption in Hartbeespoort, a;, spectra were estimated by
extrapolating the value at 460 nm using an exponential function with a slope coefficient of 0.009
nm . In general, the contribution of tripton to a, was very small (see below). Obvious residual
phycobilipigment features were also sometimes present as a result of inefficient NaClO bleaching.
Therefore determination of a;, in hypertrophic waters or surface scum, when necessary, is perhaps

better performed using, for example, a numerical technique (e.g. Zhang et al., 2008).
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Figure 3.3.7: Selected a; examples showing measured data (solid line) and the corresponding
exponential fit (dashed line). The sample point ID is shown in brackets.

The complete set of measured tripton absorption curves are shown in fig. 3.3.8 alongside his-
tograms for the slope coefficient and a;, (442 ). In general, the exponential function closely fitted the
data, evident by the straight lines on the log-linear plot (fig. 3.3.8A). The mean value of a;,(442) in
Theewaterskloof of 1.18 m ™" was nearly twice that of Loskop and Hartbeespoort (see table 3.3.1).
This might be related to the high mineralic component of seston and the windy climatology of the

reservoir. The range of a; (442) values for Hartbeespoort and Loskop were very similar (mean =
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0.51 and 0.53 m ™" respectively), despite the extremely variable trophic conditions. The variability
of a;,(442) was only weakly influenced by phytoplankton biomass (see below). a;(442) in Hart-
beespoort and Loskop were described by an inverse-Gaussian distribution (fig. 3.3.8C). Therefore
there is an increased probability of encountering a, (442 ) values < 0.5 m ™" in these systems, while
itis also unlikely to encounter values > 2 m™*. The Theewaterskloof data conforms more closely to
a normal distribution with an increased likelihood of encountering a;,(442) values near 1.om™".
The values determined for S, vary in a narrow range between 0.008 and 0.013 nm ™" with a mean of
o.010 nm ™" for all reservoirs (table 3.3.1, fig. 3.3.8B). These are typical of those measured in other

inland and coastal waters (e.g. Babin et al,, 2003, Binding et al,, 2008, Zhang et al,, 2009a). S;, was

typically normally distributed with the highest probability value being near o.o10 nm™.
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Figure 3.3.8: A) a, spectra for all reservoirs using log-scale y axis. B) Histogram of the ex-
ponential slope coefficient Sy, for each reservoir showing normal distributions with integrals
equal to the data. C) Histogram of a;(442) for each reservoir showing fitted inverse-gaussian
and normal distributions with integrals equal to the data. Legend is the same in all panels.

a.(442) was significantly positively correlated with seston in Theewaterskloof and Loskop. The
relationship was best described by a power-law fitas a;,.(442) = 0.17 X seston®®* (r* = 0.81,N=74)
(fig. 3.3.9A). A null-point linear fit, such as those determined by Binding et al. (2008) in lake Erie
(drawn in fig. 3.3.9A) and Babin et al. (2003 ) in European coastal waters, poorly fitted the lower
range of the data. In Hartbeespoort, the relationship was poor (* = 0.32,N=16). This could result
from errors associated with a;, determination in surface scum conditions. However, it may also be
more simply explained by tripton making up an insignificant proportion of the dry weight, the ma-
jority of which was living cells. There was considerable scatter between a;,(442) and TChl which
varied over 6 orders of magnitude (fig. 3.3.9B). Weak positive correlations were apparent indicating
that trophic status weakly correlated with a;,(442). The significant offset for Hartbeespoort data in-
dicated that in surface scum conditions the tripton:phytoplankton ratio was significantly lowered.
In contrast, the grouping of Theewaterskloof data towards the left of the plot was indicative of an
enlarged tripton:phytoplankton ratio, presumably resulting from a higher mineralic component.
Mineral dry weight and a;,(442) were highly correlated with a fit of a;,(442) = 0.0.41xminerals®
(r = 0.77, N=70, fig. 3.3.9C). The clustering of the Theewaterskloof data towards higher values
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was evidence of the high mineral content of seston whose mean value was 57% ,caused by the high

silica content of abundant diatom species.
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Figure 3.3.9: a,,(442) versus A) seston showing fit for combined Theewaterskloof and
Loskop data (=) and that from Binding et al. (2008) (- - ), B) chl-a, and C) minerals show-
ing fit for combined Theewaterskloof and Loskop data (-). Legend is identical in all plots.
Note log-scales.

The variability in the contribution of tripton to a, between and within the reservoirs warrants
closer investigation. For samples with a,(442) < 2 m™ a positive linear relationship existed:
ay(442) = 0.56 X ap(442), r* = 0.94, SE=0.2, N=58 (ﬁg. 3.3.10A). Mean at,(442):ap(442)
ratios for these data were 0.65 for Theewaterskloof (range of 0.35 to 0.75) and 0.7 for Loskop
(range of 0.4 to 0.9). For high biomass Loskop and Hartbeespoort waters the relationship be-
tween a;, and a, typically broke down (fig. 3.3.10B). In these waters tripton was an insignifi-
cant contributor to a,, with at,(442):ap(442) ratios of 0.1 to 0.35 in Loskop and < 0.15 in Hart-
beespoort. When investigating the change in the ratio relative to phytoplankton biomass (TChl)
there was a general inverse correlation (fig. 3.3.10C). In Loskop the relationship was described by
ay(442) :ap(442)=o.99 X TChl~°*# (r*=0.76, N = 47) while in Hartbeespoort it was a;, (442) 1, (442)
=0.37X TChl™°%° (r*=0.62, N =14). In Theewaterskloof the relationship was much weaker (r*=o0.2
for a linear fit), signifying that phytoplankton biomass does not dictate the contribution by trip-
ton to particulate matter. Evidently, tripton typically contributes more towards a,(442) as phy-
toplankton biomass decreases. Therefore phytoplankton biomass exerts a controlling influence
on the contribution that tripton makes to particulate absorption (although less so in Theewater-
skloof). The converse effect was visible in a weak positive correlation between minerals and the
ay(442):a,(442) ratio (not shown). There is no apparent relationship between the ratio and ses-

ton.
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Figure 3.3.10: Scatterplots of a;.(442) versus a,(442) for A) Theewaterskloof and Loskop
with a, < 2 showing linear fit () and B) Hartbeespoort and Loskop with a, > 2. Colorbars
display the ratio of ay:a,. C) TChl versus the ratio a;:a, showing power-law fit for Loskop.
Note log-scaled axes in B and C.

3.3.5 MASS-SPECIFIC TRIPTON ABSORPTION

Fig. 3.3.11A shows the mean chl-a:seston ratio used to test for steady-state conditions for various
sample points in Loskop, and in Theewaterskloof and Hartbeespoort as a whole. Non-steady state
conditions were indicated by widely variable ratios at point CT in Loskop (6 to 18 mg g~*) and
Hartbeespoort (4 to 11 mg g~*). Variability elsewhere was relatively small. Therefore non-steady
state conditions were associated with the high biomass blooms in Loskop and Hartbeespoort. Ry
is therefore expected to be larger than 0.3 in these blooms, but should be near 0.3 elsewhere, re-

gardless of the trophic state.

R,4 calculated for 8 values ranging between o.01 and 0.1 g mg™" are shown in fig. 3.3.11B. For
steady-state Loskop sample points BY, LS, and MB, values of  corresponding to a R,40f ~ 0.3
are 0.04, 0.055 and > 0.1 g mg™", respectively. By choosing a single value of  of 0.04 g mg™" for
Loskop, the corresponding R, values were 0.29, 0.20 and 0.04. This is in the acceptable range of
values encountered in steady-state conditions considering that chl-a at point MB was very small <
1 mgm 3. The value for f is lower than those previously determined for C. hirundinella of 0.079 g
mg " (Reynolds, 2006) but is within the lower range previously determined for natural populations
of flagellates of 0.037 to 0.714 g mg ™" (Desortova, 1981). Using a value for § of 0.04 g mg™?, the
corresponding R, for CT is 1.3. Such a high value might be acceptable since negative R,  values
are observed for f values > o0.05 g mg™". This occurs when phytoplankton dry mass calculated

using f exceeds seston dry weight.

The value of  determined in Hartbeespoort was approx. 0.03 gmg " (fig. 3.3.11B), just under
the range of 0.033 to 0.769 g mg™~* determined by Desortov4 (1981) for blue-green assemblages.
However, a R,g value of 0.3 is likely too low for the non steady-state bloom conditions. The average
literature value of § for M. aeruginosa of 0.09 gmg ™~ (Reynolds, 2006, Zhang et al., 2009a) gives a

R,q0f 1.83 (one negative value was removed from the calculations, N=17). This R, is similar to
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Figure 3.3.11: A) Mean chl-a:Seston ratios and B) mean R, values calculated for values
of B between 0.01 and 0.10 g mg™* for sample points in Loskop, Theewaterskloof and Hart-
beespoort. C) Histograms of aj,(442) for each reservoir. D) The mean aj, spectrum showing
standard deviations (--) for each reservoir.

that obtained at point CT in Loskop. Theoretically however,  could lie anywhere between 0.03
and 0.09 gmg "' in Hartbeespoort. In Theewaterskloof a ff value of 0.09 g mg™" was determined.
This is close to literature values for Anabaena of 0.063 g mg™* and lower than those for diatoms
Asterionella and Aulacoseira of 0.18 and 0.12 g mg ™", respectively, (Reynolds, 2006) both of which
were present in Theewaterskloof. In summary, f values of 0.04, 0.09 and 0.09 g mg™* were finally

chosen for Loskop, Hartbeespoort, and Theewaterskloof, respectively.

The a,(442) values determined using the aforementioned f values are shown in fig. 3.3.11C.
The mean aj, spectrum for each reservoir is shown in fig. 3.3.11D. a,(442) ranged from 0.025 to
0.263 m*> g~ " in Loskop, 0.054 to 0.105 m* g~ in Theewaterskloof, and from 0.024 to 0.048 m*
g ' in Hartbeespoort. The mean values were 0.119, 0.078 and 0.037 m* g™ ?, respectively. These
values compare favorably with those reported in other fresh inland waters (e.g. Campbell et al,,
2010, Giardino et al,, 2007, Zhang et al., 2009a). In particular values of a},( 5 50) for various lakes in
Queensland Australia varied between 0.014 and 0.145 m* g* (Campbell et al,, 2010). The mean
spectrum for Theewaterskloof was evidently mineral-rich and affected by iron oxide absorption
effects near s0o nm. The specific absorption coefficients of terrigenous mineral-rich particulate
matter vary over a wide range from <o.1 to 1 m* g~ (e.g. Babin and Stramski, 2004, Stramski et al.,
2007). Therefore the values determined here appear to be consistent within the high variability

present in the literature. A brief investigation of the sensitivity of a;,(442) to the value of f shows
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that in Hartbeespoort, mean a;,(442) values produced by a  of 0.03 and 0.09 g mg™" were 0.0145
and 0.0374 m> g, respectively. Therefore the value of f has a large influence on a}.(442) and

should therefore be chosen with care, for example, using the method used here.

3.3.6 ABSORPTION BY PHYTOPLANKTON

The diversity of trophic states and phytoplankton assemblages between and within the reservoirs
was evident in the variable shapes and magnitudes of a, (fig. 3.3.12). Extremely high a, values >
400 m~* were measured in M. aeruginosa surface scums in Hartbeespoort (fig. 3.3.12A). The spec-
tral shapes had typical chl-a absorption peaks along with strong phycobilipigment features between
ss0and 650 nm (phycocyanin and phycoerethrin) and shoulders associated with the carotenoids
myxozanthophyll, zexanthin and echinenone (400 to s00 nm) (Ibelings et al., 1994, Schluter et al.,
2006). The spectra from Loskop were much smaller in magnitude with significantly different pig-
mentation features associated mainly with C. hirundinella. These had absorption shoulders in the
region 400 to 500 nm from chlorophylls c1+c2 (440 nm), the carotenoids peridinin (460 nm) and
possibly fucoxanthin (440 to 460 nm) and xanthophylls (dinadinoxanthin, diatoxanthin) (Schluter
etal.,,2006). The presence of UV photoprotective mycosporine-like ammino acids (MAAs) typical
of dinoflagellates was strikingly evident < 400 nm (Laurion et al., 2002). a, spectra from Theewa-
terskloof had a mix of dinoflagellate and cyanobacterial pigment absorption features, with both
kinds of species being present. a, for Theewaterskloof was calculated without correcting the ay,
spectra for residual phycobilipigment because of the strong iron oxide absorption feature. There-
fore a, may be underestimated by max. 15 % in the region 550 to 650 nm for these data.

Five of the a, spectra measured in Loskop associated with low chl-a values (<1 mgm™) and
relatively high gelbstoff concentrations (ag(44o) =0.94-1.5 m ') had shapes which increased ex-
ponentially towards the blue. It is possible that this affect was caused by NaClO bleaching of dis-
solved organic matter (DOM) in the presence of relatively high gelbstoff absorption (Binding et al.,
2008). However, because of the presence of a strong signal from MAAs < 400 nm, it is difficult
to ascertain whether bleaching did in fact occur. For example, a similar effect was also visible in
two spectra from Theewaterskloof. Since these were determined using boiling methanol the effect
cannot be caused by NaClO bleaching and is probably better attributed to accessory pigments,
methodological errors or an unknown source. There was no further evidence of DOM bleaching

in the data.

TCHL-SPECIFIC PHYTOPLANKTON ABSORPTION

The relationship between a,(440) and TChlis affected by pigment packaging (cell size) and acces-
sory pigments, the former of which has the greatest affect (Bricaud et al., 1995, 2004). In so-called
Case I ocean waters, where the optically dominant constituent is phytoplankton, there is a general

relationship between cell size and trophic state, with larger cells occurring at higher TChl values.
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Figure 3.3.12: Spectral a, for A) Hartbeespoort (gray lines scaled by 0.1), B) Loskop for
ay(442) > 1, C) Theewaterskloof and D) Loskop for a,(442) < 1.

Therefore the a, to TChl ratio (or the specific absorption a;) decreases with increasing TChl due
to pigment packaging, which is manifest by an exponential relationship between a, and TChl. Sim-
ilarly, the influence of non-photosynthetic pigments relative to chl-a, measured as the ratio of blue
to red phytoplankton absorption, tends to decrease as TChl increases. However, in coastal waters
accessory pigments such as pheopigments and phytoplankton size dynamics are responsible for
large variations in a, (e.g. Babin et al., 2003, Blondeau-Patissier et al., 2009). There was significant
influence of pheopigments in both Loskop and Theewaterskloof data as shown by the chl-a:TChl
ratio which was &~ 0.5 and 0.7, respectively (fig. 3.3.13). Therefore accessory pigments and size
dynamics caused large variations in a, in these data.

The relationship between a,(440) and TChl was best described by the power law a,(440) =
0.031TChI>® (r*=0.95,N=82, Fig. 3.3.14A). The typical relationship observed in open-ocean case
I waters from Bricaud et al. (1995) is also drawn in fig. 3.3.14A). For TChl < 30 mg m 3 the data
were in general agreement with Case I estimates (note maximum value in Bricaud et al. (1995) was
approx. 25 mgm ?). The reasons for the deviation at higher TChl values are most easily explained
by looking at each reservoir in turn. In Loskop, the explanation is not likely related to cell size (the
package effect), since the dominant species was the large-celled C. hirundinella. A more plausible
explanation is the presence of strong accessory pigments. There was evidence of significant acces-
sory pigment influence at high TChl values as shown by the blue:red ratio (fig. 3.3.14C, D). At
675 nm, where the influence of accessory pigments is reduced, the data were in close agreement

with Bricaud et al. (1995) (a¢(675) = 0.018TChl°>*, *=0.97, N=82) (fig. 3.3.14B). Therefore ac-
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Figure 3.3.13: Frequency distribution of the chl-a to TChl (chl-a 4+ pheo) ratio for each
reservoir.

cessory pigments were determined as the cause of a noticeable deviation from Case I waters. The
same explanation likely also applies to the Theewaterskloof data, which was typically dominated
by a mix of intermediate and large-celled species.

The large deviation from open-ocean Case I waters observed in Hartbeespoort was more likely
caused by the small cell size of M. aeruginosa (d of 5 ym) which reduced pigment packaging, thereby
increasing absorption. Although M. aeruginosa existed in colonial aggregations of large size, the af-
fect on the bulk IOPs appears to be consistent with small cells. Despite the extremely high TChl
values, accessory pigments also appeared to have a significant impact in blue wavelengths (fig.
3.3.14C,D). Therefore it is apparent that the M. aeruginosa blooms violated both of the assump-
tions of Case I waters, especially that cell size increases with trophic state. This is also likely to
be the case for many other freshwaters dominated by small-celled cyanobacteria, resulting in wide
inter- and intra-lake variability in a;. The corresponding aj, versus TChl scatter plots demonstrate
this variability (fig. 3.3.14E,F). a, (440) values were expectedly larger than those typically observed

in Case I waters, however the agreement is improved for a (675) as a result of a smaller influence

*

?
dent for Hartbeespoort. The wide ranging a; values for TChl > 1000 mg m™ are probably caused

by accessory pigments at higher wavelengths. The increase in g, induced by small cell size is evi-
by measurement difficulties in 'scum’ conditions. The exponential fits for each reservoir are shown
in table 3.3.4.

Fig. 3.3.15 provides selected examples of a; spectra arranged by trophic class as well as the mean
for each reservoir. Table 3.3.5 gives statistics for a; (440) arranged by trophic class as well as for the
M. aeruginosa and C. hirundinella monospecific blooms. The statistics show that the mean value
of a; (440) decreased from oligotrophic to hypertrophic classes (from 0.056 to 0.018 m* mg™*).
The variability (indicated by the standard deviation) also decreased with TChl (excluding data for

M. aeruginosa). The exponential shapes associated with some spectra measured in oligotrophic

58



103 T T T T
102 3 0
E 101 -§
§ : : o
3 100 i E
- 107! -'.; N
- sl ol -
10" 10° 10" 10° 10° 10* 10° 10" 10° 10 10° 10° 10* 10°
Chl-a + pheo (mg m *)
: : 5
. e
— & )
of ¥ .3 [a
E 107} - =3
s =
3 10°F : { 32
107 : T
4 ]
10-2 | 1 | 0
102 10 10° 10! 10° 10*
a,(675) (m*)
0.09 — e R 0.040 —
A o it L L
0.08fy : : \ E 0.035
IR o e CHURC AT UUON NN N | ~ SO (-
o \ ] : i o 0.030
L §D 4 : £ o.025 :
é 0.05}- ‘\ I A . i : i 7 ‘g [y Un s o f IO .SHNL NN %t AU S
= i : Y 0,015} i
E 0I03_...,...°.8... ‘ .... - 3 :
$ 0.02} i oo ‘.l Lo . e 0.010fF-----:-0---
0.01k- ... 38 ..!-@%.,....l,...._ 0.005 :
0.00 : : LTm 0.000 : : !
10t 10° 10 10° 10° 10* 10° 10t 10° 10 10* 10° 10* 10°
Chl-a + pheo (mg m*) Chl-a + pheo (mg m *)
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Table 3.3.4: Exponential fit between a’ and TChl at selected wavelengths for each reservoir.

[4
Reservoir Power Fit r* N
T™W a:;(44o) = 0.129TChI™°4®  0.64 19
™W af;(675) = 0.039TChl™®%® o0.52 19
LK a;(44o) = 0.039TChl™°2 0.63 49
LK af;(675) = 0.021TChl™°Y  0.62 49
HB a:;(44o) = 0.050TChl™°*" 0.18 14
HB a:;(675) = 0.038TChl %% 0.8 14

waters are visible in fig. 3.3.15A. Meso-eutrophic waters in Loskop and Theewaterskloof typically

had a (440) values near 0.02 m* mg ™ with similar spectral features from the occurrence of large-

celled dinoflagellates in both reservoirs (fig. 3.3.15B). Fig. 3.3.15C and D show the large difference
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in magnitude and spectral pigmentation of the C. hirundinella and M. aeruginosa blooms (mean
a, (440) = 0.011 and 0.024 m> mg ', respectively). The wide range of a, (440) for M. aeruginosa
was most likely due to measurement difficulties in surface scum. Therefore the application of gen-
eralised IOP models to lakes is sub-optimal given that IOPs are specific to phytoplankton type and

trophic status.
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Figure 3.3.15: Selected examples of ag for A) oligotrophic, B) mesotrophic and C) hyper-
trophic waters. Spectra are labeled with dominant phytoplankton type(s), reservoir and TChl
concentration. D) The mean and standard deviation (--) of a7 for each reservoir.

PHYCOCYANIN-SPECIFIC PHYTOPLANKTON ABSORPTION

Phycocyanin pigment was determined for samples where cyanobacteria made up a significant pro-
portion of the phytoplankton population. It has been note by some authors that PC could be a
better indicator of cyanobacterial biomass than chl-a given that it is the primary light harvesting
pigment in cyanobacteria (Ahn et al,, 2007). It is also a very distinctive pigment that may be used
to discriminate cyanobacteria from other algal populations, as demonstrated in Chapter 2.

PC and chl-a were significantly correlated (fig. 3.3.16A). The relationship was best described by
PC = 8.7 X chla®7* in Hartbeespoort (* = 0.87, N=34), and PC = 4.70 X chla®**° in Thee-
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Table 3.3.5: General statistics for ag(440) (m* mg™) according to trophic class and mono-
specific blooms.

Trophic class Min. Max. Range Mean=st. dev. Median N
Oligotrophic (TChl<s) 0.021 0.084 0.062 0.0567F0.020 0.051 8

Oligotrophic (TChl<10) 0.010 0.084 0.074 0.03510.021 0.028 16
Mesotrophic (10<TChl<20) 0.013 0.046 0.034 0.025+0.009 0.024 12
Eutrophic (20<TChl<30) 0.012 0.033 0.021 0.0227F0.007  0.022 11
Hypertrophic (TChl>30) 0.005 0.045 0.039 o0.0187F0.010 0.015§ 42
C. hirundinella (TCh>30) 0.00§ 0.017 0.012 0.0117%0.003 0.011 17
M. aeruginosa (TChl>30) 0.010 0.04§ 0.03§ 0.0247%0.011 0.023 15§

waterskloof (r* = 0.32, N=19). The Theewaterskloof data were from a mixed algae/cyanobacteria
assemblage. Therefore chl-a originated from algae as well as cyanobacteria which resulted in a re-
duced PC:chl-aratio, as observed in fig. 3.3.16A and B. In the Hartbeespoort data, reduced relative
PC production was evident as cyanobacterial biomass increased. This effect was also observed for
other accessory pigments such as allophycocyanin (APC = 11.2 X chla®%, r* = 0.68, N=34) and
pheophytin (Pheo = 0.16 X chla®%%*, r* = 0.95, N=38, data not shown). Therefore, these accessory
pigments were modulated either by high-light, nutrient exposure,or through other physiological

processes in surface scum conditions (e.g. Deblois et al.,, 2013).

The PC:chl-a ratio and chl-a were inversely related (fig. 3.3.16B). The fits were derived math-
ematically and are not caused by “spurious correlation” (Berges, 1997). In Hartbeespoort, the
PC:chl-a ratio decreased from around 3 at chl-a of 100 mg m™3 to just 0.7 at chl-a of 10000 mg
m 2. This might be caused by nitrogen limitation in surface scum (Schwarz and Grossman, 1998),
however nutrient data acquired simultaneously reveal no shortage of total nitrogen or other nu-
trients (fig. 3.3.16C). An alternative explanation is that PC production is reduced in high-light
conditions (Deblois et al,, 2013, Raps et al., 1985), or in fast growth scenarios, which can occur in
surface scum. While a precise explanation remains somewhat unknown, the observation has some
important implications for surface scum scenarios. If the production of accessory pigment PC is
reduced relative to chl-a in surface scums, then chl-a might in fact be a better indicator of biomass
than PC in these conditions. Secondly, when interpreting measurements made in surface scums,
the reduced accessory pigment production might be used to explain some unusual effects in the

PC-specific absorption, which are now discussed.

apc(6zo) and PC were closely correlated according to apc(ézo) = 0.0146 X PC°%* (r* = 0.97,
N=36). Clustering in the data from 10 to 20 mg m ™3 PC resulted in a reduced coefficient of deter-
mination for Theewaterskloof alone (r* = 0.61) while PC measured in Hartbeespoort varied over
more than three orders of magnitude (r*=0.93). The poor fit in Theewaterskloof is likely the result

of strong influence of chl-c and chl-b pigments near 620 nm from diatoms and chlorophytes. This
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Figure 3.3.16: A) Chl-a versus PC showing best fit lines for HB and TW. B) The PC:chl-a
ratio versus chl-a showing best fit lines for HB and TW. C) The PC:chl-a ratio versus total ni-
trogen concentration. D) a,.(620) versus PC showing power-law best fit line. E) The PC:chl-a
ratio versus a,(620). F) TChl-a versus a; (620) showing power-law best fit line for HB. Leg-
end is the same in all plots. Note log scales.

is substantiated by the relatively low PC:TChl ratios in Theewaterskloof (median value of 0.53).
An inverse relationship was present between the PC:TChl ratio and a;fc(ézo) (y = 0.0088x 4%,
r* = 0.63, N=31, fig. 3.3.16E) similar to that observed by Simis et al. (2005). The variability in
a,.(620) can typically be attributed to the contribution of cyanobacteria to the total phytoplankon
population (Simis et al., 2007). While this is probably the case for Theewaterskloof, the variabil-
ity observed in Hartbeespoort can only be caused by biomass related variable accessory pigment
(PC) production. Therefore, azc(6zo) varied not only according to the relative contributions of
cyanobactieria and algae, but also with physiological processes related to biomass. Fig. 3.3.16F
provides some further evidence for biomass-induced changes in a;c(6zo). A positive correlation
was present between TChl and a;c(620) (y = 0.0024x°"%7, r*=0.48, N=14). Therefore the vari-
ability in ag (620) in Hartbeespoort appeared to be caused at least partially by biomass-related phe-

nomena.
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The value for in vivo a;C(ézo) was recently experimentally determined as 0.007 m* mg™ for a
wide variety of cultured cyanobacteria (Simis and Kauko, 2012). The median values for a;c(ézo)
determined in Theewaterskloof and Hartbeespoort were 0.0122 and 0.0085 m* mg ™, respectively.
This is within the range of those previously measured in natural populations (Simis et al., 2005).
For PC:TChl ratios > o.5 the value in Theewaterskloof was reduced to 0.010 m* mg™*. For Hart-
beespoort data not affected by large biomass effects i.e. TChl < 1000 mgm ™3, the median value for
a;C(ézo) was 0.0067 and the mean was 0.0072 m* mg™* which is nearly identical to that of Simis
etal. (2007) and Simis and Kauko (2012). This also demonstrates that the method for PC extrac-
tion used in this study was probably efficient.

3.3.7 ABSORPTION BUDGETS

The ternary plots in fig. 3.3.17 show the relative contributions by gelbstoff, phytoplankton and trip-
ton towards the total absorption budget of each reservoir. At 442 nm (fig. 3.3.17A) there is a
strong influence by all components. The clustering of data from Hartbeespoort towards the phy-
toplankton apex is indicative of an overwhelming dominance of phytoplankton absorption. There-
fore Hartbeespoort waters (or the M. aeruginosa bloom) might strictly be classified as Case I, i.e.
phytoplankton are the dominant contributor to absorption (Morel and Prieur, 1977). Similarly,
the clustering of the Loskop data from the C. hirundinella bloom towards the phytoplankton apex
might also be classified Case I: more than 80% of the absorption is attributed to phytoplankton. It
should be noted however that while strictly speaking these can be classified as Case I waters, the re-
flectance features of Case I green waters described by Morel and Prieur (1977) will be substantially
different to those described here. As the blooms of M.aeruginosa and C. hirundinella can essentially
be treated as ‘cultures’ (i.e. minimal influence of constituents other than phytoplankton) some
complexity regarding remote sensing applications are removed. This provides an opportunity for
remote sensing algorithms which take advantage of a signal originating primarily from phytoplank-
ton in eutrophic waters. One such example is the maximum peak-height algorithm derived from
the data obtained from Hartbeespoort and Loskop as described in Chapter 2.

The remainder of the Loskop data were typically dominated by gelbstoff (40-80%) with lesser
contributions from phytoplankton (< 50%) and tripton (20-50%). Absorption in Theewater-
skloof was generally comprised of 50% gelbstoff, 20% phytoplankton and 30% tripton. These fall
into the classification of Case II or optically-complex waters. At 675 nm (3.3.17B) the data were
expectedly clustered towards the phytoplankton apex, which resulted from the reduced influence
of tripton and gelbstoff absorption in red wavelengths. This shift due to the spectral characteris-
tics of the absorption components is visible at various wavebands of the upcoming Sentinal 3 and
past MERIS sensors (fig. 3.3.18). The majority of the water encountered in the reservoirs was
complex from an optical perspective, requiring remote sensing applications taking into account

the absorption characteristics of all water constituents presented here. Chapters 4 and s utilise the
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IOPs derived from this study for radiative transfer modeling and the derivation of remote sensing

algorithms.
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The analysis conducted here is based on sampling campaigns conducted over a short time pe-

riod and at various times of the year. There was significant seasonal variability in the contribution
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of phytoplankton towards the absorption budgets, with the maximum being reached in later sum-
mer and the minimum during winter (see phenology of phytoplankton biomass for these and other
reservoirs in Chapter 6). This has large implications for remote sensing applications. For example,
Hartbeespoort typically shifts from hypertrophic surface scum conditions during late summer to
an oligotrophic clear-water phase during winter. The gelbstoff component generally has little sea-
sonal variability but will increasingly contribute towards the absorption budget during such clear-
water phases. Therefore remote sensing approaches utilising IOP models capable of simulating a
wide range of water conditions are required for routine derivation of water information products.
The specific IOPs derived here can be used in such models to simulate both clear water and hyper-

trophic phases and for training of radiative transfer based algorithms (see Chapters 4 and s).

3.4 CONCLUSION

The inherent optical properties of phytoplankton, gelbstoff, and tripton have been determined for
three small South African reservoirs for use in water remote sensing applications. The study adds
to the limited knowledge of IOPs in diverse inland waters, especially those that are hypertrophic.
The absorption properties of the reservoirs was extremely variable highlighting the need for lake,
trophic class and/or species-specific IOP models. Relationships between the absorption compo-
nents and biogeochemical parameters were mostly reservoir-specific. As for coastal waters, acces-

sory pigments and variable phytoplankton size (package effect) are responsible for large variations

*

?
a breakdown in the conventional relationship between cell size and trophic state in inland waters.

in a;, in inland waters. In particular, high biomass populations of small-celled cyanobacteria cause

The data from M. aeruginosa blooms provide new insight into the absorption properties and
pigmentation of cyanobacterial surface scums. An observed reduction in accessory pigment pro-
duction suggests that chl-a was a better indicator of biomass than phycocyanin (PC) in surface
scums. a,, (620) was nearlyidentical to that determined experimentally by Simis and Kauko (2012)
=o0.007m*g" . The variability in a, (620) could be attributed both to variable algal/cyanobacteria
composition and to biomass-related effects. There was evidence that the hot methanol QFT tech-
nique leads to under extraction of PC by 15 to 20% even when no discernible absorption features
are present in the tripton absorption spectrum. There were errors in the tripton absorption spectra
resulting from bleaching of heterotrophic bacteria in the M. aeruginosa blooms. Mass specific trip-
ton absorption determined using a new method was in general agreement with other inland and
mineral-rich marine waters.

The IOPs measured here are used in Chapters 4 and s to advance the application of remote
sensing in small, hypertrophic inland waters. Similar IOP studies should be performed in inland
waters representative of other geographical regions of the world where data are lacking. The use of
these and similar data in bio-optical models will contribute to the ongoing development of more

globally applicable remote sensing products for inland waters.
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This chapter is based on work published as:
Matthews, M. W, and Bernard, S. (2013). Using a two-layered sphere model to investigate the impact of gas

vacuoles on the inherent optical properties of M. aeruginosa. Biogeosciences, 10, 8139-8157.

Using a two-layered sphere model to investigate
the impact of gas vacuoles on the inherent optical

properties of Microcys”tis aeruginosa
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Micrograph of vacuolate Microcystis aeruginosa cells sampled from Zeekoevlei in June 2010.
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Abstract

A two-layered sphere model is used to investigate the impact of gas vacuoles on the
inherent optical properties (IOPs) of the cyanophyte M. aeruginosa. Enclosing a vac-
uole-like particle within a chromatoplasm shell layer significantly altered spectral scat-
tering and increased backscattering. The two-layered sphere model reproduced features
in the spectral attenuation and volume scattering function (VSF) that have previously
been attributed to gas vacuoles. This suggests the model is good at least as a first ap-
proximation for investigating how gas vacuoles alter the IOPs. Measured R,; was used
to provide a range of values for the central value of the real refractive index, 1+¢, for the
shell layer using measured IOPs and a radiative transfer model. Sufficient optical clo-
sure was obtained for 1+¢ between 1.1 and 1.14 which had corresponding chl-a specific
phytoplankton backscattering, bZ‘P, between 3.9 and 7.2 X103 m* mg™ " at 510 nm. The

b o values are in close agreement with literature and in situ particulate backscatting mea-
surements. R, simulated for a population of vacuolate cells was greatly enlarged relative
to a homogeneous population. A sensitivity analysis of empirical algorithms for esti-
mating chl-a in eutrophic/hypertrophic waters suggests these are robust under variable
constituent concentrations and likely to be species sensitive. The study confirms that
gas vacuoles cause significant increase in backscattering and are responsible for the high
R, values observed in buoyant cyanobacterial blooms. Gas vacuoles are therefore one

of the most important bio-optical substructures influencing the IOPs in phytoplankton.

4.1 INTRODUCTION

4.1.1 (GAS VACUOLES IN CYANOBACTERIA: IMPLICATIONS FOR LIGHT SCATTERING

Light scattering by cyanobacteria, especially those exhibiting intracellular gas vacuoles, is poorly
described. Prokaryotic cyanobacteria play an important role in the functioning of freshwater and
marine ecosystems alongside eukaryotic algae, although their optical properties are less well un-
derstood than the latter. These ancient organisms represent a crucial component of earth’s bio-
geochemical cycling and are hypothesised to have contributed towards the oxygenation of the
early atmosphere (Blank and Sénchez-Baracaldo, 2010). Therefore further knowledge of their op-
tical properties will contribute towards an improved understanding of earth’s biogeochmical cycle
through their more comprehensive inclusion in ecological and biogeochemical ecosystem models.

Light scattering by planktonic algae and cyanobacteria is profoundly influenced by internal struc-
ture (Svensen et al.,, 2007, Whitmire et al,, 2010). Intracellular gas vacuoles are known to have a
pronounced effect on the interaction of light with cyanobacteria cells (Dubelaar et al., 1987, Ganf
et al, 1989, Volten et al,, 1998). Gas vacuoles in cyanobacteria are potentially one of the most

important distinctive cellular structures influencing the IOPs, namely absorption (a), scattering
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(b), and backscattering (by,) (see table 4.1.1 for symbols and definitions used in this Chapter).
Absorption spectra collected using an integrating sphere (which collects all of the forward scat-
tered light) showed reduced wavelength-independent absorption following collapse of vacuoles
(Dubelaar et al., 1987). This is attributed to the loss of light that is scattered in a backward direc-
tion by vacuoles which is confirmed by measurements of isolated collapsed gas vesicles which have
insignificant absorption (Shear and Walsby, 1975, Waaland et al., 1971, Walsby, 1994). Therefore

intracellular vacuoles probably only cause a slight increase in true cellular absorption (Ogawa et al.,

1979).

Vacuoles have a far greater effect on attenuation than on absorption as a result of strong spec-
tral scattering (see figures in Dubelaar et al.,, 1987, Ganf et al., 1989, Ogawa et al,, 1979, Shear and
Walsby, 1975, Waaland et al,, 1971, Walsby, 1994). Observations of natural turbid waters domi-
nated by Microcystis spp. indicate that vacuoles may contribute up to 80% of light scattering (Ganf
etal, 1989). Gas vacuoles may scatter up to six times the light scattered by the cell (Fogg et al,,
1973). Attenuation is generally increased by the presence of vacuoles (Shear and Walsby, 1975, van
Liere and Walsby, 1982, Waaland et al., 1971, Walsby, 1994), however the results of Dubelaar et al.
(1987) suggest the changes can be more complex. The difference spectra between vacuolate and
non-vacuolate suspensions (which can be attributed to scattering) are typically flat with troughs
corresponding to the absorption maxima of cellular pigments (Shear and Walsby, 1975, Waaland
etal, 1971, Walsby, 1994). The spectral shapes of the difference curves resemble inverted absorp-
tion curves and are similar to scattering spectra of algae (e.g. Bricaud et al., 1983, Zhou etal,, 2012).
Therefore it appears that vacuoles contained in the cell increase the overall scattering of the cell sus-
pensions equally across the spectrum. This is in contrast to the scattering properties of isolated gas
vesicles, which scatter light as Rayleigh scatterers with a 2™ * shape. When vesicles are packaged
within the cell wall in honeycomb-like vacuole arrangements however, their scattering properties
change. This is most likely caused by the increased particle size of vacuole arrangements (Shear

and Walsby, 1975).

The effect of gas vacuoles on angular light scatter was examined using flow cytometry by Dube-
laar et al. (1987) and Dubelaar and van der Reijden (1995). Collapse of vacuoles in cultured M.
aeruginosa suspensions increased forward light scatter by a factor of five while simultaneously de-
creasing perpendicular light scatter by a factor of ten. The reduced forward light scatter is attributed
to areduction in the real refractive index, , of the cell as a whole as a result of the gas vacuoles. More
detailed measurements of the volume scattering function (VSF) of vacuolate and non-vacuolate
M. aeruginosa cells reveal significant changes in the shape of the VSF (Schreurs, 1996, Volten et al,,
1998). Vacuolate cells consistently show a flattening of the VSF in the forward direction, which
corresponds to the reduced forward light scatter measured by Dubelaar et al. (1987). This phe-
nomenon is only reproduced by Mie modelling using homogeneous spheres with very low refrac-

tive index (=o.4) relative to water (Schreurs, 1996). This is consistent with the hypothesis that
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Table 4.1.1: Symbols and definitions

Symbol Definition Unit

m Complex refractive index

n Real refractive index

n Imaginary refractive index

My Real refractive index for water

N Homogeneous real refractive index

1+¢€ The central value of n

An The variation of n around 1 + ¢

d Diameter um

Teff Effective radius um

Vegr Effective variance

V, Gas vacuole volume

V. Core layer volume

Vi Shell layer volume

o Intracellular chl-a concentration kgm™3

a Absorption coefficient m

b Scattering coefficient m™*

c Attenuation coefficient m’

by Backscattering coefficient m™*

a, Chl a specific phytoplankton absorption coeflicient m*mg "

b, Chl a specific phytoplankton scattering coefficient m*mg*
bo Chl a specific phytoplankton backscattering coefficient m* mg™*

a, Tripton mass specific absorption coefficient m* g™t

by, Tripton mass specific scattering coefhicient m* g™t
bir Tripton mass specific backscattering coeflicient m* g™t

ag Gelbstoff absorption coefficient m

Ay Water absorption coefficient m*

by Particulate backscattering coefficient m!
bp Chl a specific particulate backscattering coefficient m*mg*

bN;, Backscattering ratio

l;f Forward scattering ratio

Qa Optical efficiency factor for absorption

Qb Optical efficiency factor for scattering

Qc Optical efliciency factor for attenuation

Qa The experimental mean absorption efficiency factor

QNAE The non-absorbing efficiency factor for attenuation

R, Remote sensing reflectance sr !

B Volume scattering function or VSF m 'srt

reduced forward light scatter is caused by vacuoles which reduce the overall real refractive index of
the cell.

There is also evidence that the presence of vacuoles strongly enhances spectral backscattering
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of cyanobacteria. In comparison with other phytoplankton, vacuolate M. aeruginosa is among the
most efficient scatterers and is the most efficient backscatterer (Zhou et al., 2012). Matthews et al.
(2012) measured a mean chl-a specific particulate backscatter ( pr) in dense M. aeruginosa blooms
of0.4X10*m " at420nmand 1.98 X 10> m ™" at 700 nm (N = 13 ). These were an order of mag-
nitude larger than similar measurements made in a high biomass dinoflagellate marine bloom and
are in the upper range of values present in literature (e.g. Ahn et al., 1992, Whitmire et al,, 2010).
The enhanced backscatter can be partially attributed to the small cell size, but must be overwhelm-
ingly attributed to intracellular vacuoles, since M. aeruginosa has no other unusual substructure or
shape variation (spherical) to distinguish it from algae. Unfortunately Zhou et al. (2012) did not
measure the backscatter of non-vacuolate cells. Until the present study, no detailed modeling study

has been undertaken to demonstrate the effect vacuoles might have on the IOPs of cyanobacteria.

4.1.2 COMPOSITION, MORPHOLOGY AND CELLULAR ARRANGEMENT OF GAS VACUOLES

Gas vacuoles are composed of individual gas vesicles which are stacked length-wise in a hexag-
onal honeycomb-type arrangement within the cytoplasm (see review by Walsby, 1994). These
vesicles are cylindrical membrane tubes composed entirely of proteins and capped on each end
with a half-cone. In Microcystis individual vesicles have width and height of approx. 70 and 360
nm, respectively, while the membrane wall is approx. 2 nm thick (Jost and Jones, 1970). Waaland
etal. (1971) found a peripheral cellular arrangement of vacuoles in Nostoc cells, as was observed
in the marine cyanobacterium Trichodesmium (van Baalen and Brown, 1969). The peripheral ar-
rangement of vacuoles has caused speculation of light-shielding of the photosynthetic lamella (e.g.
Rajagopal et al,, 2005, van Baalen and Brown, 1969) however this is somewhat disputed (Ogawa
etal, 1979). Polar arrangement is observed in Pseudanabaena while both central and polar arrange-
ments exist in Oscillatoria species (Meffert etal., 1981). In M. aeruginosa peripheral (Jost and Jones,
1970) and random (Jost and Zehnder, 1966, Smarda, 2009) arrangements are observed. The main
factor affecting the cellular arrangement of vacuoles appears to be the light conditions, with some
evidence that high light favors a peripheral location (see Shear and Walsby, 1975, Walsby, 1994).

The ratio of gas vacuole to cell volume, V,:V,, also appears to be regulated by light as well as
nutrient availability (Walsby, 1994). Density calculations for various cyanobacteria show that the
volume occupied by vacuoles in order to make the cell neutrally buoyant varies from 3—109% (ibid.).
However, studies show that the actual volume occupied by vacuoles is often substantially higher
than this. The volume occupied by vesicles in cultured M. aeruginosa in logarithmic growth phase
was §.8 ym? per cell which equates to V,:V, = approx. 8% (assuming a cell radius = 2.58 ym)
(Lehmann and Jost, 1971). Gas vacuoles exist throughout the life cycle of M. aeruginosa in vari-
able amounts reaching >90% of the cell volume in peak summer (Smarda, 2009). Vacuoles are even
present in the benthic overwintering stage in relatively high volumes (V,:V, = 1.8-2.9%) (Reynolds
etal, 1981).

One of the primary consequences of vacuolation is lowering of cellular density (providing buoy-
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ancy) and therefore the overall real refractive index. The refractive index of the vacuole is close to
0.825 while that of the other cellular material is close to 1.028 relative to the medium (water) (Fuhs,
1969). This change in refractive index has substantial implications for how light interacts with the
cell (Dubelaar et al., 1987, Porter and Jost, 1976, Shear and Walsby, 1975). Using the concept of
a significant refractive index and the Gladstone-Dale volume equivalence formulation, the overall
or homogeneous refractive index, n,,, can be calculated from its parts according to n,,, = » | i 1Y
where v is the relative volume and j is the number of components (Aas, 1996). Increasing the
vacuole content leads to a concentration of cellular material as vacuoles occupy space within the
cytoplasm (Raven, 1987). Calculating the homogeneous refractive index of the cell using the val-
ues of Fuhs (1969) for the gas vacuole and chromatoplasm and V,: V. ranging from 2 to 9o% gives
1, varying over a considerable range between 1.02 and 0.84 relative to water. This demonstrates
the considerable effect gas vacuolation may have on n,,. A detailed calculation of the complex re-

fractive index, m, for the gas vacuole and chromatoplasm is performed in section 4.2.2.

4.1.3 THE TWO-LAYERED SPHERE MODEL APPROXIMATION

Lorenz-Mie modeling using a population of homogeneous spheres has been used extensively to
model phytoplankton IOPs (e.g. Stramski et al., 2001). However, this approach is often criticised
as being overly—simplistic since phytoplankton differ considerably in shape and internal structure
from homogeneous spheres. Recent comparisons between Mie modeling and experimental re-
sults demonstrate the limitations of this approach to sufficiently simulate phytoplankton IOPs (e.g.
Whitmire et al,, 2010, Zhou et al,, 2012). An alternative approach is therefore required to account
for variation in internal structure (and shape) of phytoplankton cells. Two-layered and three-layered
sphere models which simulate internal structures of the cell wall, the cytoplasm, and or the chloro-
plast can more adequately simulate phytoplankton IOPs (e.g. Bernard et al,, 2009, Kitchen and
Zaneveld, 1992, Quinby-Hunt et al., 1989). In particular the Aden—Kerker 2 layered sphere is prob-
ably the simplest geometrical arrangement capable of reproducing experimental IOPs (Quirantes
and Bernard, 2006). The suitability of such a two-layered Aden—Kerker model for investigating the
optical consequences of gas vacuoles is evaluated here.

The cellular arrangement of cyanobacteria and M. aeruginosa in particular provides a unique
opportunity for the two-layered model to investigate the influence of vacuole substructure. The
traditional assignment of the two spherical layers of the model to chloroplast and cytoplasm re-
spectively (e.g. Bernard et al., 2009) is less suitable to prokaryotic cyanobacteria. The thylakoids in
cyanobacteria are not arranged in strict membrane bound chloroplasts but rather occur in the in-
tracytoplasmic membrane towards the periphery of the cell (the so-called chromatoplasm). Given
this cellular arrangement, the opportunity arises for the core layer to be assigned to a vacuole-like
particle, while assigning the shell layer to that containing the photosynthetic thylakoids and the
cytoplasm. This is based on the assumption that the vacuole can be adequately simulated as a sin-

gle homogeneous particle of spherical shape. However, the shape and organisation of the vacuole
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might actually lend itself to such an approximation. In comparison with isolated vesicles, the vac-
uole is more irregular and in some cases spherical in shape owing to vesicle stacking; organised in
the cell in one or more discrete packages; and much larger than the tiny individual vesicles (up to
3.5 ym in diameter by volume calculation) (see figures in Reynolds et al,, 1981, Smarda, 2009).
Therefore vacuoles behave as larger optical units (Shear and Walsby, 1975) and might be suffi-

ciently approximated by a spherical core layer.

4.1.4 M. AERUGINOSA: A REPRESENTATIVE PROTOTYPE FOR MODELING

M. aeruginosa is a ubiquitous cyanophyte responsible for much of the concern related to toxin-
production from cyano-blooms in freshwaters. Worldwide it represents a prolific species of great
relevance to environmental monitoring and remote sensing applications. Its morphological char-
acteristics — spherical shape, relatively small size, high vacuole content — make it well suited to
modeling studies based on spherical geometries and for testing theories related to how vacuoles
might affect the IOPs. Previous IOP modeling studies of cyanophytes have mainly been restricted
to small marine species (picoplankton) (e.g. Synechococcus), useful because they are assumed to
generally obey the assumptions of Mie theory (e.g. Morel et al,, 1993, Morel and Bricaud, 1986,
Stramski et al., 2001). However, these are not representative of the genera. There therefore seems
to be a paucity in detailed IOP studies of the cyanobacteria, especially for larger ubiquitous fresh-
water species e.g. Microcystis or Dolichospermum. The prolific occurrence of M. aeruginosa blooms
in South African reservoirs make it a convenient species for studies using natural populations. It
therefore represents a convenient prototype for optical modeling while simultaneously being of
great relevance to environmental applications owing to its abundance.

The existence of M. aeruginosa in nature in colonial arrangements undoubtedly has significant
implications for its IOPs, especially when considering absorption effects related to the package
effect (Agusti and Phlips, 1992, Kirk, 1975). Microcystis cells form colonies with great variability
in size and shape, and cell densities can be as high as 3 to 5 cells per 1000 ym?* (Reynolds et al.,
1981). Analysing colony size using flow cytometry, Dubelaar and van der Reijden (1995) found
that colonies appear to behave as a collection of individual cells, rather than as larger discrete optical
units (see Fig. 1 therein). While the geometries used in flow cytometry are appreciably different
from nature, for the purposes of this study it is assumed that M. aeruginosa blooms can be modelled
as a population of single cells.

The aim of this paper is to test the hypothesis that gas vacuoles significantly alter the IOPs of M.
aeruginosa by causing large changes in scattering. The study begins by investigating the effects of
containing a gas vacuole-like particle within a two-layered sphere on the optical efficiency factors,
chl-a specific IOPs, and VSF of M. aeruginosa. The potential influence and contribution of gas
vacuoles to the higher than usual R, signals observed in blooms of vacuolate cyanophytes is then
investigated using a suite of in situ experimental data of the IOPs and R,,, and a radiative transfer

model. A range of plausible n values for the shell chromatoplasm layer are therefore determined,

73



along with the corresponding chl-a specific backscattering for M. aeruginosa.

4.2  METHODS

4.2.1 STUDY AREA AND IN SITU DATA

In situ measurements were performed at Hartbeespoort Dam, South Africa, in October 2010 on
spring blooms of M. aeruginosa which made up more than 90% of the population as percentage as
determined by microscopy. Background information on Hartbeespoort as well as details of sam-
pling strategy, locations and methods can be found in Chapter 3. The M. aeruginosa blooms existed
at very high biomass as aggregated colonial surface accumulations (scum) with chl a ranging from
70 to 1503 mg m™ * with a mean value of 404 mg m™3. Given the extremely high biomass, the wa-
ter might effectively be treated as a “culture”, eliminating some of the complexity as far as optical
modelling is concerned (Matthews and Bernard, 2013a).

Chl-a was determined in triplicate spectrophotometrically by extraction in boiling ethanol (Sar-
tory and Grobbelaar, 1984). The quantitative filterpad technique was used to determine the spec-
tral absorption coeflicients of particulate matter between 350 and 850 nm using a Shimadzu UV-
2501 spectrometer fitted with an integrating sphere (Mitchell et al., 2003 ). The pigmented com-
ponent was determined by sodium hypochlorite bleaching. The Whatman GF/F filterpad was
assumed to be completely diffuse (Roesler, 1998). The integrating sphere collects almost all of
the forwards scattered light, however it does not account for the loss by backscatter which may be
caused by vacuoles (Dubelaar et al., 1987). However, no attempt was made to correct the absorp-
tion measurements for backscatter by vacuoles but its effects are investigated (section 4.3.1). The
chl-a specific phytoplankton absorption coefficient (a;) was calculated as the pigmented compo-
nent divided by chl-a. The concentration and absorption properties of tripton (TR) and gelbstoff
were determined as described in Chapter 3. TR ranged from 1.7 to 19.8 gm ™3 while ag(44z) ranged
between 0.17 and 2.04 m™*, with a mean exponential slope coefficient of 0.017 m™*.

R, was measured using an ASD FieldSpec3 (ASD Inc.) using the measurement geometry of
Mueller et al. (2003 ), see Chapter s for details. Briefly, 10 radiance spectra were collected in se-
quence for Spectralon™, sky and water targets. Taking care to exclude contaminated or outlying
spectra, the mean of the radiance spectra for each target was computed, from which an R, spectrum
was calculated. This procedure was performed in triplicate at each site, with the final R, spectrum
determined as the mean. Measurements were made under mostly clear sky conditions (cloud cover
< 20%) to avoid errors from shadows and diffuse sky light (Doxaran et al., 2004).

The depth-dependent particulate backscattering coefficient, by, (z), was measured at 440 and
700 nm using a Hydroscat 2 (Hobilabs Inc.). Depth profiles ranging from the surface to a depth of
approx. 5§ m were binned, median filtered to reduce noise, re-sampled and interpolated to 10 log-
spaced depth bins between 0.8 m and the maximum depth using nearest neighbour interpolation.

The profiles were measured simultaneous to R, and chl-a measurements, and the chl-a specific
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particulate backscattering coeflicients, by, calculated using by, at z = 0.8 m and surface chl-a mea-

surements. Profiles measured in chl-a > 1500 mg m™3 were excluded.

4.2.2 COMPLEX REFRACTIVE INDEX OF M. AERUGINOSA

The details of Mie and Aden-Kerker theory of light scattering with small particles may be found in
Morel and Bricaud (1986) and Bernard et al. (2009). Briefly, the complex refractive index (m) is
composed of real (n) and imaginary parts (n’) according to m = n — in’. nis said to vary according
to1+ ¢ + Anwhere 1+¢is the central value around which # varies and An is the spectral variation
as predicted by the Kramers-Kronig or Ketteler-Helmholtz theories. In this text n is presented rel-
ative to water where n = n/n,, where n,, is 1.334. m for phytoplankton may be determined from
spectral absorption and particle size distribution (PSD) measurements using an inverse anoma-
lous diffraction approximation (ADA) model (Ahn et al., 1992, Bricaud and Morel, 1986). This is
based on the ADA assumption that the value of 1 + ¢ is close to the the value of n,, (i.e. 1+ ¢ ~
1.334). This assumption is generally valid for phytoplankton (Aas, 1996). While heavily vacuolate
cells violate this assumption, it should be valid for non-vacuolate cells. Since vacuoles have an in-
significant effect on true cellular absorption used by the method, an initial value for the refractive
index of a homogeneous M. aeruginosa cell consisting of chromatoplasm and centroplasm (minus
effects of gas vacuoles) was determined using the method of Bricaud and Morel (1986) as modified
by Bernard et al. (2001).

The particle size distributions of M. aeruiginosa were not measured due to difficulties associated
with the colonial arrangement of the cells and their existence at extremely high biomass in a sur-
face scum layer. Therefore, a log-normal distribution of cells with diameters ranging from 3.2 to
8 um was used to estimate the PSD for M. aeruginosa. The size range is based in measurements of
individual M. aeruginosa cells previously made in Hartbeespoort Dam (Robarts, 1984). The distri-
bution was expressed in terms of the effective variance (V.g) and radius (r.¢) (Bernard etal., 2007)
which were set to 0.02 and 2.58 ym respectively. The log-normal distribution is generally suit-
able for representing mono-specific phytoplankton blooms (Ahn et al., 1992, Bricaud and Morel,
1986). The size distribution was scaled to give 1 mg chl-a for the phytoplankton population (or
the chl-a specific PSD) using an intracellular chlorophyll density (c;). The c; value has large im-
plications for 1/, the absorption and scattering efficiencies (Q,, Q) and the chl-a specific volume
coefficients (Morel and Bricaud, 1986). Therefore an appropriate value for ¢; must be chosen with
care. Values for ¢; for M. aeruginosa previously measured are 2.1 kg m ™3 (Zhou et al,, 2012), 3.2
kg m~* (Agusti and Phlips, 1992), and 4.5 kg m ™3 (Reynolds et al., 1981). These were computed
from cellular volumes and chl-a concentrations presented in the references and fall within the up-
per range of accepted values for phytoplankton (e.g. Morel and Bricaud, 1986). Values for marine
pico-cyanobacteria are typically less than this around 1.15-1.78 kg m ™ (ibid.). The lowest ¢; value
of 2.1 kg m™3 was selected after analysing results produced by the different values, as discussed in

section 4.3.4.
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The experimental mean absorption efficiency factor, Q,, for M. aeruginosa was then calculated
between 360 and 850 nm using the estimated chl-a specific PSD and a; (Morel and Bricaud, 1986).
n’ was then calculated by fitting the experimental Q, to that modelled using the ADA. An, was
determined as a Hilbert transform of n’ according to the Kramers-Kronig theory of anomalous
dispersion (Bernard et al,, 2001). An initial value for 1 + ¢ was then determined by convergence of
the modelled efficiency factors for attenuation (Q,) and for the non-absorbing equivalent (QN4%).
The 1+ ¢ value was selected at wavelength where n’ was smallest. This technique was used given the
absence of further scattering or attenuation data. A range of plausible 1 + ¢ chromatoplasm values

were also determined as described in section 4.2.5.

4.2.3 COMPLEX REFRACTIVE INDICES OF GAS VACUOLES

Using interference microscopy Fuhs (1969) estimated n=0.80 for vacuole and n=1.028 for the sur-
rounding cytoplasm relative to water. Fuhs’s (1969) calculations included the volumes of air, pro-
tein membrane and interstitial cytoplasmic material. The spectral refractive index for a hypotheti-
cal gas vacuole was calculated using a volume equivalent approach (Gladstone-Dale). Calculations
were performed using the mean geometries for Microcystis vesicles given by Jost and Jones (1970)
(length = 360 nm, diameter = 70 nm, wall thickness = 1.8 nm) and an assumed packing efficiency
of 15% (Walsby, 1994). Using these geometries, the relative volume for interstitial cytoplasm (wa-
ter), air and proteins was calculated as 0.15, 0.76 and 0.09 respectively. The spectral real and imag-
inary refractive indices for the lipid-free protein Ovalbumin (Arakawa et al., 2001) were used for
the protein membrane. These data are similar to values reported elsewhere for proteins (n=1.20
and n’'=1 X 107% Aas, 1996) and are generally representative of lipid-free proteins. Detailed spec-
tral refractive index data for water and air were taken from Ciddor (1996) and Hale and Querry

(1973), respectively.

4.2.4 PARAMETERISATION OF THE TWO-LAYERED SPHERE MODEL

A two-layered sphere model using the Aden and Kerker (1951) formulation and the code of Toon
and Ackerman (1981) were used to calculate the IOPs (after Bernard etal., 2009) ina Fortran/Matlab
environment (The MathWorks™). Inputs to the model are the radius of the core and shell layers,
m for the core and shell layers, the wave number (wavelength) and angular resolution (whichis 0.1
degrees). The output is the dimensionless angular intensity parameters (i, and i, ) and the efficiency
factors for attenuation and scattering (Qj) from which the phase function (), the backscattering
probability ( 1;;,) , and the absorption and backscattering efficiencies (Q,, Q) can be calculated
(see Morel and Bricaud, 1986, for calculations). Using the PSD and m for shell and core layers, the
bulk IOPs (a, b, and b;,) for the cell population were calculated at a s nm wavelength resolution.
The core and shell layers were assigned to the vacuole and chromatoplasm, respectively. By as-

signing the layer with the higher refractive index to be the outer layer, the effect of the cell wall
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membrane which is known to have a great impact on scattering (Quinby-Hunt et al., 1989, Svensen
etal,, 2007) is more adequately simulated. Furthermore, in cyanobacteria the photosynthetic thy-
lakoids are most often arranged in concentric anastomosing shells parallel to the cell wall (Golecki
and Drews, 1982), and this kind of arrangement with some additional irregularity is observed in M.
aeruginosa ( Smarda, 2009). The sometimes peripheral arrangement of gas vacuoles are not without
enclosure by the layered cell wall membrane, and a random arrangement within the centroplasm
is more frequently observed in M. aeruginosa. This favors a core assignment for the vacuole which
may even be surrounded by the photosynthetic lamella (Smith and Peat, 1967).

The effects of altering the relative volume occupied by the gas vacuole, V, on the IOPs is inves-
tigated. The relative volumes of the core, V,( =Vg) , and shell, V;, layers were adjusted according to
V. = 1 — V.. The core radius, r,, may be calculated using the shell radius, r, and V. by r, = rSVi/ 3,
Considering relative gas vacuole volumes in the range 1 to 50%, and a population of cells with di-
ameters between 3.2 and 8.0 ym, the diameters of the spherical core vacuole would range between
0.68 and 6.34 um. This represents a particle with a minimum diameter comparable to the wave-
length of visible light (680 nm), and in the anomalous diffraction domain.

It has been shown that the cell volume remains unchanged when gas vesicles are collapsed by
pressurisation (Dubelaar et al., 1987, Porter and Jost, 1976). The synthesis of vesicles within the
cell therefore decreases the relative volume occupied by the chromatoplasm, leading to a concen-
tration effect on the absorbing material, assuming that the amount of absorbing material in the cell
(¢;) remains constant. This effect must be accounted for in calculations when altering the relative
volumes of core and shell layers. The equation relevant to a two-layered geometry relating n’ to ¢;

and the relative shell volume, V;, is given by (Bernard et al., 2009):

: 675 €1, (675)

N ehrom (675) = Momedia 77.'4.V5 (4' 1)
where fyegia = 1.334 and a’;(675) is the theoretical maximum absorption by unpackaged chl-a.
This scales the n’ at 675 nm by the maximum theoretical absorption of unpackaged chl-g, keep-

ing the amount of absorbing material in the cell constant. The value for a’,(675) is given by Johnsen

etal. (1994) as 0.027 mg™* m™* which is applicable to cyanobacteria (Bidigare et al., 1989).

4.2.5 OPTICAL CLOSURE FOR M. AERUGINOSA USING THE TWO-LAYERED MODEL

The availability of the suite of in situ optical/biogeochemical data from the high biomass mono-
specific natural M. aeruginosa blooms in Hartbeespoort provides an opportunity to perform a de-
tailed investigation of the optical properties of M. aeruginosa. For the data set used here, a, com-
posed a mean of 85% (up to 98%) of the total absorption, and 96% (up to 99%) of the particulate
absorption at 442 nm (see fig. 3.3.18 in Chapter 3. ag (442) had a mean value of 18 m™* while
the corresponding mean values for a; and a, were 0.3 and 1.1 m ™. Therefore from an optical per-

spective M. aeruginosa is the overwhelmingly dominant contributor to the total absorption and
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scattering, with negligible or small contributions from tripton (non-phytoplankton) and dissolved

components.

Neglecting the contribution of viruses, bubbles and other small particles (Stramski et al,, 2001),
a four component bio-optical model consisting of phytoplankton, tripton, gelbstoff and water, was
used to forward model the R, using a direct solution of the equation of radiative transfer in Ecolight-
S (V1.0 ©Sequoia Scientific). The input to Ecolight-S are the total IOPs (a;, by, by;) and the down-
welling irradiance. As a; is known (or measured), the only unknowns in the forward model are
(back)scattering for phytoplankton and tripton, assuming gelbstoff is non-scattering. Given the
negligible contribution of tripton to particulate absorption and scattering, the only optically signif-
icant unknowns are the (back)scattering from M. aeruginosa, which in this case are estimated using
the two-layered model. The data therefore provide an opportunity to investigate optical closure
with regards M. aeruginosa using (back)scattering as determined by the two-layered model.

With regards to the two-layered model, assuming that the core vacuole layer m value is constant
with a volume of 50%, and the n’ value for the chromatoplasm is adequately determined, the only
unknowns in the two-layered configuration are the shell layer 1 + ¢ value and in this case the esti-
mated PSD. Tests showed that variations in the PSD had small effects on the two-layer determined
IOPs and resulting R,,. Decreasing Dy, or increasing D,,,, while holding V4 constant had negligi-
ble effects. Increasing Ve to 0.1 while simultaneously decreasing D,;, to 1 gm or increasing D,
to 15 ym had small but noticeable effects resulting in a max. change in R, at chl-a of 100 mgm™3
of approx. 12%. Therefore there is a relatively small sensitivity to the width and size range of the
PSD in R,..

Assuming the estimated PSD is acceptable, the only remaining unknown is the shell layer 1 + ¢
value. At the high biomass observed in this study, the R,; was found to be very sensitive to the
chromatoplasm 1 + ¢ value. Comparing values of 1.08 and 1.15 for the chromatoplasm, the cor-
responding qu, increased over 370% which resulted in a 300% increase in R, for a constant chl-a
value of 100 mg m™3. Therefore, for the high biomass conditions and model configuration used
here, the magnitude of R,, is found to be primarily controlled by the shell 1 + ¢ value.

Initial tests using the 1+ ¢ chromatoplasm value determined after Bernard et al. (2001 ) resulted
in by, values substantially lower than literature values as well as underestimates of R, as determined
by forward simulations using Ecolight-S. Thus optical closure could not be achieved using the ini-
tially determined 1 + ¢ value, suggesting that a higher value might be more appropriate. Therefore,
in order to achieve optical closure of the experiment, the chromatoplasm 1 + ¢ value was allowed
to vary in the range 1.04 to 1.1 at a 0.001 interval. This range of values is in agreement with val-
ues for eukaryotic chloroplasts (Bernard et al., 2009) which are likely equivalent to a prokaryotic
chromatoplasm and therefore likely to be acceptable from an optical perspective. The resulting by,
and b generated by the two-layer model were added to a look-up table (LUT).

The forward model was then allowed to select appropriate values for by, and b, from the LUT

in order to provide the best fit with the measured R, solved using a non-linear Nelder-Mead sim-
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plex algorithm. In this way a range of appropriate values for the chromatoplasm 1 + ¢ value was
determined which provided appropriate optical closure for the R,;. Eight R, spectra for which
absorption coefficients (in duplicate), biogeochemical parameters (in triplicate) and atmospheric
parameters were co-incidentally measured were used.

The bio-optical model for the forward model was configured as:

a; = chla X a; + TR X a,, + a, + a,
by = chla X by + TR X b, + b,
bbt = chla x bZ‘P + TR X bZtr -+ bbw

where subscript w stands for water.

All components in the forward bio-optical model were calculated using measured values for chl-
a, TR and a, for each sample. a,, and b, (bpw = 1/2b,,) were taken from Rottgers et al. (2011).
The mass-specific tripton absorption, a’;, used was 0.037¢~°*°*=442) a5 determined in Chapter 3.
The corresponding tripton mass-specific (back)scattering coefficients, b}, and b}, , were estimated
using a Mie model and an inverse ADA model (see Bricaud and Morel, 1986, for calculations).
The tripton mass-specific PSD was computed from a, and an estimate of n’ = o.01exp(—o0.0071)
(Stramski and Wozniak, 2005) (note that the original equation given in Stramski et al. (2001) is
incorrect). The tripton PSD was assumed to obey a Jungian distribution with slope y = —4 and
diameters between 1 and 100 ym in log-spaced bins. Mie calculations of homogeneous spheres
were then used to compute b}, and b}, with the mass-specific tripton PSD and #’. n for tripton
particles was set to 1.05, assuming a 90% detrital component (n = 1.04) and a 10% mineral com-
ponent (n = 1.18) (Stramski et al,, 2001). The fit between the measured a;. and that modeled by
Mie calculations was very close (R* = 0.98). The following power-law fits were thus determined:
bl = 0.6481°7% and b}, = 9.925¢ 1 *°M,

The resulting uncertainty to R, from the Mie model determined tripton (back)scattering is likely
to be negligible given the very small mean contribution (= 4%) of tripton particles to a;. Assuming
an a,(442) value of 10 m ™, the corresponding values for a,(442) and a;,(442) would be 9.6 m™*
and 0.4 m™*, respectively. Using a; (442) =0.035 m ™, areasonable value for M. aeruiginosa (Zhang
etal,2012),and a}.(442) of 0.037 m ™, the corresponding values for chl-a and TR are 274 mgm 3
and 10 g m™?, respectively. Using an approximate value of bj,, (442) of 0.006 m™* (Zhou et al,,
2012) and a value of b}, (442) of 6e-4 calculated as above, the corresponding values for by, (442)
and by, (442) are 1.64 m ™" and 0.006 m?, respectively. This equates to a contribution of 0.4% by
tripton to by,. Thus the influence of tripton at these high biomass values is negligible.

The downwelling irradiance was calculated using Radtran (Gregg and Carder, 1990) the default
atmospheric model for Ecolight-S using parameters recorded at each station including the date,
latitude, longitude, GMT, wind speed, aerosol optical thickness (AOT, Solar Light Microtops 11
sun photometer) and cloud cover (%). Horizontal visibility used by Ecolight-S was estimated by
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vis = 3.9449/(AOT500 — 0.08498) (Retalis et al., 2010). The air mass type was set to continen-
tal. Default values were used for atmospheric pressure (=29.92 inches mercury), relative humidity
(=80%), water vapor (=1.5) and ozone. The vertical profile used was constant with depth, given
the shallow optical depth caused by the very high cyanobacterial biomass. Ecolight-S was called as

a subroutine in Python programming language (V. 2.7.1).

4.3 RESULTS AND DISCUSSION

4.3.1 COMPLEX REFRACTIVE INDICES

Fig. 4.3.1 shows the data and results of the determination of the complex refractive indices for M.
aeruginosa and the gas vacuole. The a; value (Fig. 4.3.1 A) is well within the range presented in
the literature for cyanobacteria (e.g. Dupouy et al,, 2008), and is almost identical to that for M.
aeruginosa determined by Zhang et al. (2012), and slightly higher than values obtained by Dekker
(1993) for eutrophic blue-green dominant assemblages. The characteristic absorption maximum
of phycocyanin is clearly visible near 620 nm. The a,, values used to calculate m did not account for
increased apparent absorption that could result from backscatter by gas vacuoles. No attempt was
made to correct the measurements for this effect. However, tests showed that variable a:; has little
effect on the value of 1 4 ¢ determined by the method. The significance of the variability in n’ on
the IOPs will be investigated further (section 4.3.4).

The log-normal normalised PSDs are shown in Fig. 4.3.1 B. The effects of varying V. is evident
on the distribution shapes (s fixed at 2.58 ym). The narrow distributions are likely to be rep-
resentative of the spring blooms in Hartbeespoort, and closely resemble those for monospecific
cultures (e.g. Ahn et al., 1992, Bricaud and Morel, 1986). The value chosen for Ve had a small
influence on the values determined for Q, and n’ but caused more significant changes in 1+ ¢ (be-
tween 1.078 and 1.081 for V= 0.05 and 0.01 respectively). The value for Ve was set to 0.02 50 as
to give a spread of smaller and larger cells without incurring a bias towards small cells, as is visible
for V= 0.0s.

The experimental Qa is shown in Fig. 4.3.1 C, and agrees well with literature derived values for
phytoplankton (ibid). n’ (Fig. 4.3.1 D) also compares well to the literature values for homogeneous
and heterogeneous cells (Ahn et al,, 1992, Bernard et al., 2009, Bricaud and Morel, 1986) and has
a mean spectral value of 0.0012i. n and n’ for the vacuole (Fig. 4.3.1 D, E) have mean spectral
values of 2.079 X107 % and 0.825 respectively. The value determined for # in air is 1.10, identical
to that estimated by Fuhs (1969) to have the highest probability. These were estimated by power

466 4 108 X 10 %andn =

law functions in further modeling of the IOPs: n = 2.28 X 1071~
3334 % + 0.82.
The value of 1 + ¢ for M. aeruginosa was determined as 1.080 (Fig. 4.3.1 F). This value was

determined at a wavelength of 625 nm where n’ = o.001. This value represents the mean n,, of a
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Figure 4.3.1: Optical and size parameters for M. aeruginosa and gas vacuole. A) Chl-a spe-
cific absorption, B) normalised log-normal size distribution function, F(d), for V,4=0.01, 0.02
and 0.05, C) experimental absorption efficiency factor, D) n’ for M. aeruginosa and gas vac-
uole x1e*, showing best fit line, E) n for gas vacuole showing best fit line, F) n for M. aerugi-
nosa showing 1+ ¢ value.

Microcystis cell which includes the cell wall, thylokoids, the cytoplasm and other refractive cytoplas-
mic inclusions such as polyphosphate granules. The value is within the range of those presented
elsewhere for algal cells (Bricaud et al., 1988, Morel and Bricaud, 1986), however it seems quite
high when compared with values used previously for modeling cyanobacteria or M. aeruginosa as a
homogeneous cell (e.g. Volten et al,, 1998, Zhou et al,, 2012). However, the value of 1.04 used by
Volten et al. (1998) is an estimate for generic phytoplankton from Morel and Bricaud (1986). A
value of 1.036 was determined by Zhou et al. (2012) for cultured M. aeruginosa using similar meth-
ods to those presented here, however none of the absorption, size or attenuation data used to con-
strain the final choice of 1 4 ¢ was shown. More comparative values for 1 4- ¢ between 1.047-1.085
are given by natural populations of marine Chlorella (Spinrad and Brown, 1986) which have similar
shape (spherical) and size (d=1.2-6.8ym) to M. aeruginosa. A m of1.085+ 0.048i was derived fora
homogenous cell of marine Chlorella (Quinby-Hunt et al., 1989). Therefore m = 1.080 — 0.0012i

for a homogeneous M. aeruginosa cell between 400 and 750 nm is not outside the range of values

81



determined for algae. The final value for 1+¢ for the shell layer of a vacuolate cell is determined

using R, data (see section 4.2. 5).

4.3.2 THE INFLUENCE OF GAS VACUOLATION ON EFFICIENCY FACTORS AND VOLUME COEFFI-

CIENTS

The optical efficiency factors versus the Mie size parameter (a = xdn,, /1) for a single cell having
variable gas vacuole content is shown in Fig. 4.3.2. The relative volume occupied by the gas vac-
uole is: 0%, corresponding to an essentially non-vacuolate homogeneous cell, 3% for an upwardly
buoyant cell, 10 and 30% for an expected vacuole content in a buoyant surface bloom, and 50% for
a heavily vacuolate over-buoyant cell. The non-vacuolate cell (V,=0) demonstrates the expected
interference patterns for Q. and Qy, tending towards theoretical expectations with increasing size.
For cells with increasing vacuole content, there is significant perturbation in the phase, magnitude
and shape of the efficiency factors. This is related to the internal gas vacuole, since the overall pig-
ment content of the cell is constant. For a mean cell in the size range of M. aeruginosa Q, and Q,,
are slightly increased with increasing vacuolation, up to a point where they decreases dramatically
with heavy vacuolation (V,=50%). This is better observed by the spectral efficiency factors for the
M. aeruginosa population shown in Fig. 4.3.3. The upward sloping Q. and Qj, spectra are proba-
bly caused by the relatively high 1+¢ value (Fig. 4.3.3 A, B). This value has the greatest influence
on the slope and shape of Q, and Q,, (see Bricaud and Morel, 1986), and its influence is inves-
tigated further in section 4.3.4. The value of Q.(510) ranges from 2.0-2.6 while that of Q,(510)
ranges from 1.85-2.45 (table 4.3.1). Therefore according to the two-layered model, gas vacuoles
can significantly alter the shape and magnitude of Qc and Qb through a shift in phase of the interfer-
ence patterns of the efficiency factors (Fig. 4.3.2 A, B) . This finding is in agreement with Dubelaar
etal. (1987) who found that gas vacuoles caused decreased overall spectral attenuation (see further
analysis in section 4.3.4). The shift in the position of the red chl-a absorption induced attenuation
feature near 685 nm towards shorter wavelengths is also visible with increasing vacuolation (Fig.
4.3.3 A), as observed by Dubelaar et al. (1987). This confirms that gas vacuoles are responsible for
this phenomenon.

In accordance with theoretical expectations, Q, is rather undisturbed by gas vacuolation, except
for a very slight decrease with large heavily vacuolate cells (figs. 4.3.2 and 4.3.3 C). The agree-
ment between the experimental and modelled Q,, is very close using a value of 0.022 for a%,(675).
However, for gas vacuolation >50% there is a small departure from experimental values of Q, (not
shown). This effect is probably caused by a breakdown of the assumption of volume-equivalence
(eq. 4.1) rather than from light shielding or other effects. Therefore a maximum gas vacuole vol-
ume of 50% was used for modeling, in order to not violate the volume equivalence assumption.

It is apparent that gas vacuolation has very little implication for absorption according to the two-
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Figure 4.3.2: Optical efficiency factors and the backward and forward scattering ratios of M.
aeruginosa versus the Mie size parameter, a, modelled as two-layered spheres with variable gas
vacuolation (0-50% cell volume). Plotted for cell diameters from 1-50 yum at A = 675 nm.
The shading indicates the size range applicable to M. aeruginosa. The dotted line in E is the
ratio of backscattering probability where V, = 50% to that where V, = 0% x 107"

layered model, and therefore the model does not support a significant light shielding role for gas
vacuoles in agreement with Ogawa et al. (1979).

The greatest effect of the gas vacuole is on Qp;, and the backward and forward scattering ratios
(figs. 4.3.2 and 4.3.3 D, E, F). Qu(510) for a non-vacuolate cell (=7.3 x10?) falls in the range of
algal species modelled with relatively high refractive indices (see Ahn et al., 1992, Bricaud et al.,
1988). Vacuolation increases Qy;, markedly in a relatively spectrally invariant and linear fashion
and especially for smaller cell sizes in the range of M. aeruginosa (table 4.3.1). Qp(510) for a heavily
vacuolate cell (=0.0156) is twice that of its homogeneous equivalent. by may be up to § times larger
in a heavily vacuolate cell than for ahomogeneous equivalent in the size range of M. aeruginosa (Fig.
4.3.2 B). This effect is associated with decreased l;f by up to 0.5% (Fig. 4.3.2 F), as was observed
experimentally by Dubelaar et al. (1987). However, the spectral slope of b~;, indicates enhanced
backscattering with higher vacuole content towards the red relative to the blue (Fig. 4.3.3 E). These

curves closely resemble those determined experimentally (e.g. Zhou et al., 2012). The opposite is

83



3.5 A 3.5 B
0(_7
‘400 500 600 700 ‘400 500 600 700
A (nm) A (nm)
0.02
D
0.015p - 2 S
Gﬂs 0.15 GB ____/"_/ '*-»\______M__ _;;_//_ —
0.01 > -:'."___._--'““'-\._____.__._ _ ./—.———n
Gleos\"——’_\_\/—\
400 500 600 700
L (nm)
99.8
o 997}
£ £
= < 9967
§ g 99.5 =
& g 994l -
o a5 ? . e P
a 99.3 ......
0 L 99.2 : x
400 500 600 700 400 500 600 700
A (nm) A (nm)

Figure 4.3.3: Optical efficiency factors and forward and backward scattering ratios of a
population of M. aeruginosa modelled as two-layered spheres with variable gas vacuolation
(0-50% cell volume). Legend is the same as Fig 4.3.2. The measured absorption efficiency
factor is drawn for comparison in C (+).

observed for forward scattering probability (Fig. 4.3.3 F). Therefore the following can be said in
relation to the effect of gas vacuoles on backscattering: firstly it appears that gas vacuolation has
large implications for small cells of which M. aeruginosa is an example; secondly, Qy; increases
roughly linearly with increasing vacuole content; and lastly, by seems to be enhanced in the red

relative to the blue for cells with a high gas vacuole content.

The chl-a specific volume coefficients for variable gas vacuolation are shown in Fig. 4.3.4 A-D.
The shapes of the attenuation and scattering spectra are identical to the efficiency factors in Fig.
4.3.3. The range of values for b; (510) from 0.25-0.33 m* mg ™~ are towards the upper range of val-
ues observed for cyanophyta and phytoplankton in modelling studies (Bricaud et al., 1988, Morel
and Bricaud, 1986). The downward-sloping attenuation curves for V,=50% resemble those previ-
ously measured for M. aeruginosa (Dubelaar et al,, 1987). The modelled chl-a specific absorption
is almost identical to the measured value (see Fig. 4.3.1). bZ¢( 510) is 1.0X10 ®> m* mg " for a

non-vacuolate cell, and 2.1 X103 m* mg ™" for a heavily vacuolate cell. This amounts to a two—fold
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Table 4.3.1: Chl-a specific volume coefficients (m> mg™), efficiency factors and scattering
ratios (%) at 510 nm for a population of M. aeruginosa modelled as two-layered spheres with
variable gas vacuole content (%) for shell layers 1 + ¢ = 1.080 and 1+ ¢ = 1.036.

Vg C:; b; Z‘P X103 Q. Qp Quy bb‘P bﬁp

1+ ¢=1.080

0O 0.27 0.2§ 1.0 2.00 1.85 0.0073 0.39 99.59

0.28 0.26 1.2 2.09 1.94 0.0087 0.45 99.54
10 0.32 0.30 1.4 2.34 2.18 0.0106 0.49 99.50
30 0.35 0.33 1.8 2.60 2.44 0.0134 0.55 99.44
50 0.35 0.33 2.1 2.60 2.45 0.0156 0.64 99.35§

1+ £=1.036

o 0.38 0.36 0.1 2.77 2.62 0.0004 0.02 99.96

0.35 0.33 0.2 2.59 2.44 0.0015 0.06 99.92
10 0.33 0.31 0.4 2.42 2.28 0.0029 0.13 99.85§
30 0.25 0.23 0.8 1.84 1.70 0.005§ 0.32 99.66
50 0.24 0.22 1.0 1.73 1.59 0.0077 0.48 99.51

increase in by, due to the presence of the gas vacuole. The values are within experimental values for
phytoplankton (e.g. Whitmire et al., 2010) but are lower than those observed for M. aeruginosa by
Zhouetal. (2012) (= 5.727x10 > m* mg ") and the vacuolate marine cyanophyte Trichodesmium
(= 11x107* m* mg*) (Dupouy et al., 2008). by, is slightly negatively sloped but becomes more
positively sloped towards the red >700 nm with increasing vacuolation. Previous measurements
of by, for M. aeruginosa show a downward sloping spectral shape (Zhou et al., 2012). The change
in n’ and n due to vacuolation for the shell chromatoplasm layer is shown in Fig. 4.3.4 E and F.
The space occupied by the gas vacuole causes the absorbing material to be concentrated thereby
increasing the value of n’ which leads to associated changes in An. This assumes that the size of the

cell remains unchanged by vesicle synthesis.

4.3.3 THE INFLUENCE OF GAS VACUOLATION ON THE VSF

There have been limited attempts to measure and model the volume scattering function of M. aerug-
inosa both with and without gas vacuoles. Schreurs (1996) performed measurements presented in
Volten et al. (1998) at 633 nm using an Helium-Neon laser to measure the VSF of vacuolate and
pressurised (non-vacuolate) M. aeruginosa and another vacuolate Microcystis species. The presence
of gas vacuoles was observed to cause unusual features in the VSF, specifically, an increase in magni-
tude between 20°-70°, and a decline towards the forward direction <40°. Similar to other studies
citing the importance of intracellular structure on the scattering matrix (e.g. Quinby-Hunt et al,,
1989, Svensen etal., 2007, Witkowski et al., 1998), these features have been speculatively attributed
to gas vacuoles. The same studies used a population of homogeneous spheres using Lorenz-Mie

theory to attempt to fit the measurements (n=1.04, n'=0.000). However, the homogeneous sphere
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Figure 4.3.4: Chl-a specific volume coefficients for a population of M. aeruginosa modelled
as two-layered spheres with variable gas vacuolation (A-D). Legend same as Fig 4.3.2. The
influence of gas vacuolation on the n’ and n of the shell layer are also shown (E and F).

model produced poor comparisons with measurements of both vacuolate and non-vacuolate cells.
The flattening towards forward angle was only reproduced with a cell of significantly reduced n =
0.4 (Schreurs, 1996). The influence that gas vacuoles might have on the VSF in the extreme forward
and backward directions remains unknown for the present. Although recently developed instru-
ments have the capability to measure the VSF between 0.6°~177° (e.g. Zhang et al.,, 2002), no such

measurements on vacuolate and non-vacuolate cells appear to have yet been made.

Fig. 4.3.5 A-D shows the VSFs at four wavelengths. Three features attributable to the gas vac-
uole are immediately apparent: an enlargement between 20°-70°, a flattening towards the forward
direction <45°, and a steady enhancement and flattening of the VSF in the backward direction
>90° for increasing vacuole content. The results are compared to those of Volten et al. (1998) in
Fig. 4.3.5 E, and normalised to the San Diego Harbour VSF at 90° (Petzold, 1972). The two-layer
model for a vacuolate cell containing V,=10% accurately reproduces the enhanced scattering be-

tween 20°-70°, as well as the flattening in the forward direction < 45° observed for vacuolate cells.
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Figure 4.3.5: Volume scattering functions for a population of M. aeruginosa at various wave-
lengths modelled as two-layered spheres with variable gas vacuolation (0-50% cell volume).
Legend same as fig 4.3.2. E shows comparison of these results with measurements of vacuo-
late (4vac) and non-vacuolate (-vac) M. aeruginosa made by Volten et al. (1998) at 633 nm
(scaled to San Diego Harbor measurements of Petzold (1972) at 90°).

The fit between the modelled homogeneous cell and the measured non-vacuolate cell is also good
in the forward direction (<90°). The enhancement in the backward direction from vacuoles is not
observable in the measurements of Volten et al. (1998 ), and the magnitude of the measured VSF in
the backward direction is substantially greater than that from the model. This is most likely caused
by the assumption of sphericity, since the VSF in the backward direction is heavily influenced by
non-sphericity (Clavano et al.,, 2007). Tests varying some of the model’s parameters and using
those presented in Volten et al. (1998) (n=1.04, n’=0.000, Vef=0.92, Reﬁ:6.83) did not produce an
improved fit. Nevertheless, the two-layered vacuole model accurately reproduces observations of

the normalised VSF in the forward direction.
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4.3.4 INFLUENCE OF THE CHOICE OF 1 + £ AND ¢; ON THE IOPs

The value for 1 4+ £=1.036 chosen by Zhou et al. (2012) was also used to calculate the IOPs for
comparison with section 4.3.1 (Fig. 4.3.6, Table 4.3.1). The resulting attenuation spectra compare
more closely with the findings of Dubelaar et al. (1987) (Fig. 4.3.6A): the curves slope down-
wards towards the red; lower vacuole content results in gradually increased attenuation; and the
shift of the attenuation peak caused by the absorption maximum of chl-a towards shorter wave-
lengths with increasing vacuolation is clearly observed (681 nm for V,=50%, 685 nm for V;=0%).
Therefore, gas vacuolation is likely the cause of these changes in attenuation. Spectral scattering is
also decreased with increasing vacuolation in a manner similar to attenuation (absorption was con-
stant) (Fig. 4.3.6 B). The lower 1 + ¢ value results in substantially lower backscattering relative to
the higher refractive index value (Fig. 4.3.6 C, D). The heavily vacuolate cell (V,=50%) scatters ap-
proximately the same as a non-vacuolate cell with the higher refractive index. The lower refractive
index cell responds in much the same way as the cell with the higher refractive index to vacuolation
with backscatter increasing in a roughly linear manner for increasing percentage vacuolation. The
probability of backscatter for the lower refractive index cell is however more sloped, indicating a
bias for light scatter in the red rather than in the blue. The VSF for the lower refractive index cell is
generally smaller than for the higher refractive index cell, but less sloped in the backward direction
(Fig. 4.3.6 E, F). The comparison with Volten et al.’s (1998) measured scattering function is poorer
in the forward direction (< 7/2) but slightly improved in the backward direction (> 7/2). The
distinctive features causing an enhancement and flattening in the VSF at forward angles is repro-
duced by the model.

The lower and higher refractive index cells respond in very similar ways to increasing gas vacuo-
lation, and reproduce experimental observations in ¢ and b, and in the VSF. The 1+ ¢ value controls
both the shape of c and b, and the magnitude of b,; therefore it is one of the primary causal variables,
along with the vacuole itself, influencing the IOPs. Although the shape of spectral attenuation may
be used to constrain the choice of 1 4 ¢ (Bricaud and Morel, 1986) favouring a lower 1 + ¢ value,
the higher 1 + ¢ value agrees better with measurements of the VSF and IOPs (Table 4.3.2). The
final value for 1 + £ however is determined in section 4.3.5 below.

The influence of ¢; on the IOPs was also investigated using the values from Zhou et al. (2012) =
2.1kgm™3, Agusti and Phlips (1992) = 3.2 kgm ™3 and Reynolds et al. (1981) = 4.5 kgm 3 (Table
4.3.2). The ¢; value is directly linked to Q, and causes changes in the values of n’ and n due to the
method used to determine m (section 4.2.2). Higher c; values give higher values for Q, and there-
fore n’, however the value determined for 7 is relatively unchanged (Table 4.3.2). The variable Q,
and n’ values result in changes in the (back)scattering efficiencies and in the chl-a specific IOPs
produced by the two-layer model: higher ¢; values are associated with lower Q, and Q;, values,
and much smaller values for by and by, (Table 4.3.2). The changes in the chl-a specific IOPs are
primarily caused by normalising the PSD by chlorophyll. Therefore ; has a large controlling influ-
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Figure 4.3.6: Chl-a specific IOPs and VSFs for a population of M. aeruginosa modelled as
two-layered spheres with variable gas vacuolation (0-50% cell volume) and 1 + e=1.036. The
dotted line in A-E is for a cell with V,=0% and 1 + ¢=1.080. Legend same as Fig 4.3.2. F
shows comparison with measurements of Volten et al. (1998) (see fig 4.3.5 for details).

ence on the two-layered model. The choice of ¢; in this case was determined by the closeness to
literature values of Zhou et al. (2012): the lowest ¢; value = 2.1 kg m™* most closely reproduced
Zhou et al’s (2012) Q, = 2.26 and Qy, = 0.02 values. A second reason for choosing the low c;
value is that higher ¢; values were unable to reproduce the high values for bj,, observed in buoyant
M. aeruginosa blooms. The higher c; values had a dampening effect on scattering probably due to
the concentration of absorbing material in the shell layer. For these reasons the lower ¢; value was

used.

4.3.5 VARIABLE CHROMATOPLASM 1 + £ VALUES DETERMINED USING R,

The measured and modelled R, spectra estimated using variable values of 1 + ¢ for the chromato-
plasm are shown in fig. 6.3.5A,B. The spectral shapes of R, produced by the bio-optical model and

Ecolight-S are in good agreement with those measured. The difference between 400 and 750 nm

89



Table 4.3.2: Effect of variable ¢; on m and IOPs (510 nm) of a population of vacuolate cells
(Ve = 50%).

¢; (kgm™3) 2.096 3.16 4.525

@(675) 0.145§ 0.219 0.313
n'(675) 0.0017 0.0026 0.0041
1+ ¢ 1.0801 1.0801 1.0805

Qy 2.45 2.36 2.27

Qup 0.016 0.015 0.014

bf; (m*mg ™) 0.33 0.21 0.14

qu; (m*mg™') o0.0021 0.0013 0.0008

l;bq, (m*mg™") 0.0064 0.0062 0.0060

is on average less than 0.005 sr*, which is likely to be satisfactory given the high R, values (fig.
6.3.5C). There are a good spread of over and underestimates for R, with no apparent consistent
bias for wavelengths < 700 nm (fig. 6.3.5D). The wavelength-specific coefficient of determination
(fig. 6.3.5E) has troughs in the regions corresponding to the fluorescence bands of phycobilip-
igments (550 to 650 nm) and chl-a (near 685 nm). This is expected since the model does not
account for fluorescence effects. The poor performance <500 and >700 nm is most likely related
to uncertainties in by, towards the blue and NIR, respectively. The small sample size (n=8) must
also be taken to account in the R* calculations. However, the correlation is sufficiently good in the
regions 500 to 700 nm given that errors in R, determined in situ may be >10% depending on the
wavelength and measurement conditions (Doxaran et al., 2004).

The mean value osz;P(s 10)is5.48 X 10> m* mg " with arange 0f 3.89t0 7.19 X 10 *m* mg .
These values agree closely with that determined for cultured vacuolate M. aeruginosa by Zhou et al.
(2012) = 5.7 X107* m> mg " (fig. 6.3.5F). They are also within the range of values measured for
Microcystis dominated assemblages in Spanish lake Rosarito (= 3.6 to 5.3 X107 * m* mg " at 412
nm) (Ruiz-Verdu, 2013). The by, profiles for Hartbeespoort measured in situ are shown in (Fig.
4.3.8 A, B). The estimated chl-a specific particulate backscattering at z = 0.8 m and 440 nm ranged
fromo.37to 1.5 X103 m*>mg ™, and at oo nm from 1.9 to 7.8 X10~ > m> mg . Thisis in the same
order of magnitude as those estimated from R,;. The by, values are likely underestimates since chl-
a was measured at the surface, and the blooms were floating. There is some disagreement in the
spectral shape between Zhou et al. (2012) (chl-a approx. 5 mg m™?) and the two-layered sphere
estimates (fig. 6.3.5F). Interestingly, by, is positively sloped towards the red near the surface and
negatively sloped at depth (Fig. 4.3.8 B). Therefore there is some evidence for an upward sloping
by, for M. aeruginosa in contrast to Zhou et al. (2012) which are downward sloping. The expla-
nation for the depth-variable slope is not known, but seems to be related to biomass; if biomass
affects the spectral slope then this finding has has important implications for by, measured using

cultures. In summary, the bj,,, values are typically larger or in the upper range of those determined

90



OvOS 0-08 B T T T T
0.06 Measured 0.061 Modelled i
3 0.04 3 0.04}
::: xz
0.02 A ! 0.02
002 Srr . i . I - 002 = e I L
00 450 500 550 600 650 700 750 00 450 500 550 600 650 700 750
Wavelength (nm) Wavelength (nm)
0.010 0.05 T T T
: D : '
0.005 kb b :0,04 ..’. ..? " & 109
o TR & & % 8508
L 3 = 0.03 i - @4 |leng
o 0.000 o : ’ .}
w-'f 2 0.02} R L
P ’ P 500
0.005 o 0.01 f
- I j | b
0'01200 450 500 550 600 650 700 750 0'0{?.00 0.01 0.02 0.03 0.04 0.05 400
Wavelength (nm) R, meas, (sr'!)
1.0 T T T T T T T
E: !
0.8 - : _
D i

0'00200 450 500 550 600 650 700 750
Wavelength (nm)

I I
0'200 450 500 550 600 650 700 750
Wavelength (nm)

Figure 4.3.7: Tuning of the two-layered sphere model using measured R,;. A) Measured and
B) modelled R,; and C) the The difference between the measured and modelled R,;. D) Scat-
terplot of measured and modelled reflectance colored by wavelength. E) Wavelength-specific
R* between measured and modelled R, (N=8). F) b;, corresponding to various shell layer 1+
values determined by fitting the measured and modelled R,s, and that measured by Zhou et al.
(2012) (squares). Colors in A B C and F represent different samples.

experimentally for cultured algae (e.g. Vaillancourt et al., 2004, Whitmire et al,, 2010), and are in

good agreement with the limited measurements made on vacuolate M. aeruginosa.

The modelled R, spectra correspond to chromatoplasm 1 + ¢ values varying between 1.104 and
1.138 with a mean value of 1.12. The 1 4 ¢ values estimated using R, are likely to be justified for
the following reasons: the overwhelming optical dominance of phytoplankton relative to other
water components meaning that from an optical perspective the measurements were effectively
performed on “cultures”; aside from V, and some small uncertainty related to the estimated PSD,
the primary factor controlling phytoplankton backscatter is the chromatoplasm 1 + ¢ value which
was the only variable parameter used to determine appropriate values for R,; the range of 1 + ¢
values fall in the expected range of eukaryotic chloroplasts of 1.09 to 1.19, mean of 1.14 (Bernard
et al,, 2009), and result in an overall homogeneous 1 of 0.97 by volume equivalence; finally, the

resulting values determined for b;:q, are in close agreement with measurements made on vacuolate
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Figure 4.3.8: A) by,(700) versus by, (420) from 11 profiles. Note exponential relationship
with log-scaled axes. B) Five selected depth profiles with minimum depth of 0.8 m. Note that
byp(420) > byp(700) at depth.

cultures and natural blooms of M. aeruginosa.

Furthermore, the chromatoplasm 1 + ¢ values accord with previous two-layered modelling ef-
forts: Quinby-Hunt et al. (1989) used a shell layer n=1.13 and core n=1.08 to best reproduced
the scattering matrix of Chlorella, a species with similar morphology to M. aeruginosa; the typical
1 + ¢ value for a shell layer proxy for the cell wall is 1.2 (e.g. Svensen et al., 2007). Given these
considerations the resulting 1 + ¢ values as determined by R,, are likely to be appropriate albeit that
assumptions are made regarding several components affecting the R, (e.g. the VSF for the tripton
particles estimated using a Mie model).

Q factors and chl-a specific volume coefficients determined using the two-layered sphere with
the mean chromatoplasm 1 + ¢ value of 1.12 are shown in comparison to those measured by Zhou
etal. (2012) in table 4.3.3. The values for Q;(s510) and Qp,(510) compare well, but measured bf;
values are substantially higher than those from the two-layered sphere. It appears that the two-
layered model has a lower total scattering due to the slightly lower value of Q. The backscattering
probability is also elevated for the two-layered model, although by, (510) is very close.

Table 4.3.3: Optical efficiency factors and chl-a specific volume coefficients (m> mg™ ) at
510 nm for a population of M. aeruginosa modelled as a population of two-layered spheres
with shell layer 14+-¢=1.12 and V;=50%.

Q Q@ Qg bg bp X10° by (%)
Two layered spheres  2.35 2.20 0.040 0.321  0.30 5.5 1.8
Zhou et al. (2012) - 2.26 0.020 - 0.6326 5.7 0.91

In comparison with eukaryotic species Qy; is in the upper range of values measured on cultures:

from 0.0018-0.064 at 510 nm (Vaillancourt et al., 2004, Zhou et al., 2012) and from 0.006-0.061 at
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442 nm (Whitmire etal,, 2010). Surprisingly, the largest of Qy;, values are from large dinoflagellates
containing high intracellular carbon concentrations and unusual chromosome morphology and
internal structures. This internal structire is used as an explanation for the higher than expected
Qpp. Using similar reasoning, intracellular gas vacuoles in M. aeruginosa are responsible for the

high Qy;, values.

4.4 APPLICATIONS

4.4.1 INFLUENCE OF GAS VACUOLES ON REFLECTANCE

The large magnitude of R, and scattering in buoyant surface cyanobacterial blooms has been ten-
tatively attributed to the presence of gas vacuoles (e.g. Ganf et al,, 1989). The potential effect that
intracellular gas vacuoles might have on the magnitude of R, was investigated through simulations
for populations of vacuolate versus non-vacuolate cells. Vacuolate cells were modelled with a chro-
matoplasm 1+¢ value of 1.12 and V,=50% while homogeneous cells had 1 + ¢ of 1.08, inside the
plausible range for phytoplankton cells (Aas, 1996). In the simulations, a;,(440) and a,(440) were
set to constant values typical of Hartbeespoort of 0.5 and 1.5 m™, respectively. Ecolight-S was run
using a solar zenith angle of 30°, a wind speed of 2 m s, and default atmospheric parameters.

R, for vacuolate and non-vacuolate M. aeruginosa populations was computed for chl-a between
1 and 1000 mg m 3, a plausible range for Hartbeespoort (Fig. 4.4.1 A, B). The magnitude of R, for
the vacuolate population is in the range observed in buoyant surface cyanobacterial blooms and
those measured in this study (see Matthews et al., 2010, Randolph et al,, 2008, Wang et al,, 2010,
Zimba and Gitelson, 2006). A large difference in the magnitude of Rgs between the vacuolate and
non-vacuolate populations is apparent, which becomes increasingly pronounced as the concen-
tration of chl-a increases. This effect is due solely to the increase in by, associated with vacuolate
cells. The peak near 710 nm becomes apparent around chl-a = 30 mg m ™ (note the model does
not include fluorescence effects at 685 nm). For chl-a > s00 mg m ™3, R, is enlarged significantly
towards the NIR (> 700 nm). This is typical of surface M. aeruginosa blooms allowing them to be
distinguished from other species of algae, e.g. dinoflagellates (Matthews et al.,, 2012). Therefore
algorithms for detection/discrimination of vacuolate cyanophyte blooms might be targeted at the
enlarged signal at these wavelengths. The results demonstrate the large influence variable phyto-
plankton backscatter resulting from gas vacuoles may have on the magnitude of R,; and provide an

explanation for the high values observed in hypertrophic cyanobacteria-dominant waters.

4.4.2 SENSITIVITY STUDY OF EXISTING EMPIRICAL MODELS FOR ESTIMATING CHL-a

While semi-analytical algorithms based on bio-optical models and solved using a variety of op-
timisation procedures are often used for deriving water constituents, forward modelled R,, from

bio-optical models also allow empirical relationships for water constituents to be validated (e.g.
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Figure 4.4.1: R, modelled at various concentrations of chl-a showing difference between vac-
uolate (solid lines) and non-vacuolate (dotted lines) populations of M. aeruginosa. Vacuolate
cells were modelled with shell 14-¢ of 1.12 and V,=50%. Non-vacuolate cells were homoge-
neous cells with 14-¢ of 1.080. The values for a;(440) and a,(440) were constant at 0.5 m™
and 1.5 m™', respectively. For more details see text.

Dekker et al., 2001, Matthews, 2011). In this example, the sensitivity of empirical relationships
between chl-a and a 710:665 nm band ratio and the baseline subtraction maximum peak height
(MPH) variable from Chapter 2, were tested using simulated R, for a population of vacuolate M.
aeruginosa. Ecolight-S simulations were run for chl-a between 20 and 1000 mg m™3 for vacuolate
cells (see section 4.4.1). by, was extended to 9oo nm in order to facilitate computation of the MPH
variable using the value at 750 nm. Noise was introduced by randomly varying the concentration

!, respectively, inside the natural

of TR and ag(44o) in the ranges 1 to 5o gm™3 and 0.5 to s m™
variability expected for Hartbeespoort as determined in Chapter 3. This tested the sensitivity of
the empirical relationships to variations in background constituent concentrations.

Fig. 4.4.2 shows the R, spectra and the resulting empirical relationships derived for the 710:665
ratio and the MPH variables. The best fit determined for the 710:665 ratio was:

chla = 7.294 X exp1-2739><(Rrs(71°)/Rrs(665))’ R> = 0.99

while that for the MPH variable was:

chla = 222173mph* + s5231.9mph + 14.625, R* =1.0

The high correlation coefficients demonstrate the robustness of empirical-type algorithms for
providing chl-a estimates in hypertrophic waters, as confirmed by the simulations. This confirms
that empirical studies such as Schalles et al. (1998) and Matthews et al. (2012) have a strong bio-
optical basis, provided that the dominant water constituent is phytoplankton (in this case the species

tested is M. aeruginosa). The approach also demonstrates how empirical relationships derived from
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Figure 4.4.2: A) R, simulated for chl-a between 20 and 1000 mg m~3 for a vacuolate M.
aeruginosa population with random perturbations in tripton concentration and ag(440). Em-
pirical relationships between chl-a and B) the 710:665 band ratio and C) the MPH variable
showing the best fit lines.

red/NIR optical signals might be species-specific since they are based on bj,,. Therefore, empiri-
cally based algorithms are likely to be sensitive to species variability. The sensitivity study showed
that the empirical relationships are stable despite variability in background concentrations of TR
and gelbstoff.

4.5 CONCLUSION

The two-layered sphere model has facilitated in a simplified form the investigation of how a low re-
fractive index particle (a gas vacuole) enclosed within a cell might impact the IOPs of M. aeruginosa.
The two-layered model was capable of reproducing a number of features attributed to vacuoles: re-
duction in attenuation and the shift in the chl-a attenuation peak towards smaller wavelengths with
increasing vacuolation; enlarged values for spectral backscattering particularly towards the red and
NIR; decreased scattering in the forward direction noticeable as a dip towards smaller angles in the
VSF; and an enlargement in the VSF between 30 and 60°. These findings confirm that gas vacuoles
are responsible for these features and that the two-layer model is generally suitable as a first approx-
imation for investigating the influence of gas vacuoles on IOPs in cyanobacteria. Sufficient closure
between measured R,, and that modelled using vacuolate two-layered spheres was obtained using
chromatoplasm shell layer 1+¢ values between 1.1 and 1.14. The corresponding b;P( 510) values
between 3.8 and 7.2 X107® m* mg™ " are in good agreement with those determined experimen-
tally for M. aeruginosa (Zhou et al,, 2012). The IOPs derived in this study are used in Chapter 5
to distinguish between vacuolate cyanobacteria and dinoflagellate speces using a radiative transfer
inversion algorithm.

Simulations using Ecolight-S showed how gas vacuolate cells cause the R, to be greatly enlarged,
relative to a population of cells modelled as homogeneous spheres. The changes in R, can be at-

tributed to variable phytoplankton backscatter caused by intracellular structure (the gas vacuole).
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Empirical relationships for estimating chl-a in eutrophic/hypertrophic waters are robust even un-
der variable tripton and gelbstoff concentrations, and are likely to be sensitive to species variability,
confirming the findings related to the MPH algorithm in Chapter 2. In conclusion, gas vacuoles are
one of the most important bio-optical sub-structures profoundly affecting the IOPs of cyanobacte-
riaandleading to increased backscatter in particular towards the red/NIR, which may be distinctive

to the genera.
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Distinguishing cyanobacteria from algae in
optically-complex inland waters using a radiative

transfer inversion algorithm

a3 [ ekl § TH3 R D13

SEM of Ceratium hirundinella sampled at Loskop Dam in August 2011. Credit: Dr. Paul Oberholster.
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Abstract

A hyperspectral radiative transfer based inversion algorithm was used to test the sen-
sitivity of the inverse problem to phytoplankton assemblage size and species compo-
sition (type) in optically-complex inland waters. The algorithm was sensitive to high
biomass blooms of the small celled Microcystis aeruginosa and the large celled Ceratium
hirundinella through retrieval of assemblage size parameterised in terms of the effec-
tive diameter (D,f) and type, determined as percentage cyanobacteria (cyano) com-
position. The inversion algorithm directly solves the radiative transfer equation (RTE)
through using Ecolight-S (E-S) radiative transfer model (RTM) coupled with a bio-
optical model solving for the IOPs, and a non-linear simplex optimisation algorithm
solving for six unknowns to match the measured remote sensing reflectance (R,s). Size
variable chlorophyll-a (chl-a) specific phytoplankton absorption and (back)scattering
coefficients (ag, by, byy) for cyano and dinoflagellate (dino) populations for input to
the bio-optical model were calculated using a two-layered sphere model. Estimates of
the complex refractive index (m) of the cyano/dino populations were derived using
estimated/measured particle size distributions (PSD) and a, data and the anomalous
diffraction approximation (ADA) technique. The algorithm provides estimates of D,
cyano/dino species composition in %, chl-a, and the spectral a, and combined gelb-
stoff /tripton absorption (ag, ) and non-phytoplankton particulate backscattering (b )
coefficients in the range 400 to 8oo nm. Estimates of size and type were significant in
hypertrophic waters (r>0.8) but was expectedly poorer in mixed mesotrophic and olig-
otrophic waters. Chl-a and a4(440) were retrieved with r > 0.8, while ag,(440) was
retrieved with r > 0.7 in oligo/mesotrophic waters. Good optical closure for R,s was
achieved over the considerable trophic range of optically-complex water types measured
in the study. Type detection was optimised through using an empirical expression for
cyano detection in eutrophic waters. The study demonstrates the feasibility of an in-
version approach for differentiating cyano blooms from eukaryotic species in optically-

complex inland waters.

5.1 INTRODUCTION

§.1.1 THE INVERSE PROBLEM OF WATER REMOTE SENSING IN OPTICALLY-COMPLEX WATERS

THE INVERSE PROBLEM FOR OPTICAL water remote sensing entails retrieval of the inherent opti-
cal properties (IOPs) and associated biogeochemical parameters of the water from the apparent
optical properties (AOPs), most commonly the water remotely sensed reflectance (R, ), using so-

called inversion algorithms. The IOPs typically refer to the absorption coefficient (a) and the vol-
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ume scattering function (f, VSF) which when integrated over the backward hemisphere gives the
backscattering (b;,) coeficient and when integrated over both hemispheres gives the scattering (b)
coefficient. The total absorption and (back)scattering coefficients of the water can be calculated
as the sum of the respective coeflicients of each of the optically significant constituents. These, for
the purposes of this study, are partitioned into living phytoplankton (¢), chromophoric dissolved
organic matter here referred to as gelbstoff (g), and non-phytoplankton particles (NPP) or trip-
ton (tr), which includes minerals and detritus, not neglecting water itself (w). The IOPs of other
water constituents such as bubbles, viruses, bacteria and very small particles e.g. colloids, are not
explicitly determined for this study, but may also be significant contributors to the total IOPs (e.g.
Stramski et al.,, 2004, 2001). The IOPs are independent of the ambient light field and therefore can
be accurately measured and characterised in the laboratory or the field. This has been the subject
of recent studies where the aim has been to characterise the IOPs in optically-complex inland wa-
ters, whose optical properties are generally poorly described in comparison to marine waters (see
Chapter 3 and references therein). A detailed description of the IOPs for waters relevant to this
study can be found in Chapter 3.

In contrast to the IOPs, the AOPs which include the remote sensing reflectance or R, defined
asL,,/E; where (L,,) is the water leaving radiance and E,; is the downwelling irradiance, are depen-
dent on the IOPs and the ambient light field which is affected by multiple factors including view-
ing geometry, atmospheric properties and could cover. In addition AOPs must exhibit enough
stability to be useful for describing the water. The quantity of most interest as far as the inverse
problem is concerned is typically the R, useful because of its measurement by satellite-based re-
mote sensing platforms, and its ease of measurement in situ using various instrumentation (Mobley,
1999). Therefore the inverse problem is most often framed in terms of the retrieval of IOPs from
the R,;. The inverse problem is most easily understood in relation to the forward problem), which
is solving for the AOPs using known IOPs and the radiative transfer equation (RTE) in water. The
forward problem can be accurately solved through various mathematical solutions of the RTE us-
ing radiative transfer models such as Hydrolight (Sequoia Scientific) (Mobley, 1994). A detailed
knowledge of the IOPs of the water constituents is required to provide suitable optical closure with
modelled and measured AOPs, which has recently been the subject of various studies in optically-
complex coastal and inland waters (e.g. Effler et al,, 2012, Gallegos et al., 2008, Tzortziou et al.,
2006). The forward problem and its accurate calculation through radiative transfer modelling us-
ing suitably characterised IOPs in the form of a bio-optical model is the basis of many inversion

algorithms, which are now discussed.

Detailed reviews of the theory and application of inversion algorithms have been performed
by Gordon (2002), IOCCG (2006), Twardowski et al. (2005). Inversion algorithms typically fall
into two categories. The first is the semi-analytical approach which use various algebraic equations
expressing the AOPs in terms of the IOPs to solve for constituent IOPs and biogeochemical pa-

rameters (e.g. Lee et al,, 2002, Roesler and Boss, 2003 ). The most often used equation expressing
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this relationship is the so-called reflectance approximation (REFA) (Gordon et al.,, 1975, Morel
and Prieur, 1977), defined by:

~ L b
Qa~|—bb

1S

where f and Q are a dimensionless coeflicient and the bidirectional function, respectively, de-
pendent on the angular configuration, illuminations conditions, the IOPs and VSF of the water,
and environmental factors such as wind (Morel et al,, 2002). The REFA is therefore subject to
the assumptions and uncertainties associated with the é factor which up to the present has not
been adequately characterised in high-biomass, turbid and optically-complex waters (Chami et al,,
2006, Lee et al,, 2011). Furthermore, the single scattering approximation breaks down in highly
scattering waters as a result of multiple scattering events which causes large changes in the radiance
distribution and therefore f/Q and the REFA (Piskozub and McKee, 2011).

The second approach uses various optimisation procedures to match the spectral signatures of
measured AOPs with those forward modelled using a RTM (e.g. Mobley et al., 2005, Schiller and
Doerffer, 2005). The use of a RTM avoids the assumptions and uncertainties associated with the
REFA and the associated f/ Q factor, although some assumptions are made regarding the VSF. Vari-
ous non-linear optimisation procedures are used in an iterative manner to reconstruct the observed
reflectance spectrum. These algorithms may require large simulated data sets of reflectance spectra
contained in spectral libraries or look-up tables which may be used to train or parameterise the al-
gorithm, for example a neural network (Doerffer and Schiller, 2007). These approaches require as-
sumptions regarding the characteristics and distributions of IOPs and constituent concentrations
to be made. These two approaches have been broadly described as explicit and implicit, respectively
(Gordon, 2002), and there exist numerous variants of both kinds of algorithms that have been de-
veloped, mainly for use in marine waters (see reviews). For the purposes of this study, algorithms
and concerns relevant to the inverse problem in optically-complex inland and near-coastal waters

are briefly reviewed.

Inversion procedures applied in inland or near-coastal waters with significant optical contribu-
tions from constituents other than phytoplankton including gelbstoff, minerals and tripton pose a
very challenging case for remote sensing. Several water constituents each with value ranges po-
tentially varying over several orders of magnitude must be solved for simultaneously. The main
concern arises from the ambiguity, or non-unique nature of the solution owing to the additive na-
ture of the IOPs due to various confounding constituents (Defoin-Platel and Chami, 2007). This is
further exacerbated when using approximations for describing the relationship between R, and the
IOPs, e.g. the REFA, which are subject to various assumptions (ibid.); and from the inherent noise
present in hyperspectral resolution radiometric data (Gillis et al,, 2013, Moses et al,, 2012). Thus
there is significant ambiguity in the retrieval of IOPs in optically-complex waters. The solution be-

comes plausible only through prior parameterisation of constituent IOPs constrained within cer-
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tain value ranges and distributions that are representative of the natural waters under investigation
(Defoin-Platel and Chami, 2007).

Despite these challenges and limitations, the development of inversion algorithms for optically-
complex waters is desirable mainly because of their potential to maximise the information that can
be retrieved from the remotely sensed signal through the estimation of the IOPs, and because of
the limited applicability of approaches used in the open-ocean environment to optically-complex
waters (IOCCG, 2006). Inversion procedures differ from empirically derived algorithms which
derive biogeochemical parameters directly from reflectance variables (for reviews and details see
Matthews, 2011, Odermatt et al., 2012). The empirical approach has been criticised as minimising
the information that might be derived from the remotely sensed signal since it does not usually solve
for the IOPs (IOCCG, 2006). However the inverse approach does not necessitate a significant

improvement in reliability or accuracy of variable estimates (Matthews, 2011).

There are several examples of recent studies in optically-complex inland and coastal waters us-
ing the semi-analytical approach (e.g. Aurin and Dierssen, 2012, Mishra et al., 2014, Salama et al,,
2009) and spectral matching type approaches (e.g. Doerffer and Schiller, 2007, Pozdnyakov et al,,
2005, Santini et al,, 2010, Vanderwoerd and Pasterkamp, 2008). While these studies do make good
progress in modifying these procedures for complex and turbid waters, they are limited however
in that they typically focus on one or other water type or trophic range, and are focused primarily
on retrieval of chl-a and the absorption coefficients at a single wavelength or a few wavelengths
and thereby provide little useful information on the spectral characteristics of the IOPs. In this re-
gard they are limited in so far as providing information on the phytoplankton assemblage species
composition or size, which can be retrieved from the IOPs and which has not yet been achieved
for optically-complex waters. Studies investigating type detection have mainly been limited to de-
tection of diagnostic spectral features associated with cyano species such as Microcystis or the ma-
rine Trichodesmium spp. resulting in flagging of pixels (e.g. Dupouy et al., 2011, Hu et al,, 20104,
Matthews et al,, 2012, Stumpf et al, 2012), or the retrieval of accessory pigmentation such as
cyanobacterial phycocyanin (PC) using semi-analytical algorithms which are subject to large un-
certainties and assumptions dependent on the phytoplankton assemblage composition (Hunter
etal, 2010, Simis et al,, 2005). The pixel flagging type approaches are limited in that they provide
only a qualitative information on type without detailed information regarding the IOPs, other wa-
ter constituents or size of the phytopankton assemblage. Therefore there exists a paucity of detailed
inversion studies in optically-complex waters investigating the retrieval of spectral IOPs which si-
multaneously provide information on the phytoplankton assemblage species composition and size.
Such a problem is the focus of this study, the rational, design and approach of which are now dis-

cussed with regard to the retrieval of type and size from R, data.
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§5.1.2 RATIONALE FOR TYPE AND SIZE DETECTION IN OPTICALLY-COMPLEX AND HYPERTROPHIC

WATERS

The primary factors governing the IOPs of phytoplankton are the cell size (diameter=d), real re-
fractive index (n) and internal structure, and pigmentation (Matthews and Bernard, 2013b, Morel
and Bricaud, 1986, Whitmire et al., 2010). These vary considerably between species leading to con-
siderable variation in the IOPs. Therefore, given the large influence of these variables on the IOPs,
it is feasible to invert for the absorption coefficients (and indirectly species composition and size)
from radiometric data (e.g. Bernard, 2005, Ciotti and Bricaud, 2006, Lee, 2004). While size is typi-
cally not directly retrieved, it can be determined through its effect on a, through the package effect
(e.g. Hirata et al., 2008). As shown in Chapter 4, n for the shell layer of M. aeruginosa modelled by
a two-layered sphere was retrieved by a constrained inversion. The feasibility for the inversion of
size and species composition is now discussed with reference to various types of inland waters.

Harmful algal blooms often occur at high biomass in eutrophic waters, and are often dominated
by one or a few species. Such conditions are typified by the M. aeruginosa and C. hirundinella
blooms frequently occurring in South African inland waters, which have been already described
in Chapter 3. Hyper-eutrophic inland waters frequently experience blooms with chl-a in excess
of 20 mg m™3, which even might exceed 1000 mg m™3. In these conditions phytoplankton is typ-
ically the water constituent with the greatest contribution to the bulk absorption and scattering
budgets, meaning that these can from an optical perspective be treated as case I type waters (Morel
and Prieur, 1977). However the green waters that Morel and Prieur (1977) measured are likely to
be significantly different from these, which nevertheless have a strong background contributions
from tripton and dissolved components (including minerals, bacteria, etc.), meaning they are com-
plex from an optical perspective. Therefore, although these waters can be treated as phytoplankton
dominant, they nevertheless require an approach that takes account of the background constituents
within appropriate ranges. However, the overwhelmingly large phytoplankton signal provides an
opportunity to resolve the spectral features of R, associated with various species-specific pigments
as postulated by Richardson (1996), and other diagnostic features including assemblage size and
internal structure (Matthews and Bernard, 2013b). The latter features are known to have a pri-
mary controlling influence on the shape and magnitude of the absorption and (back)scattering of
phytoplankton (Bricaud et al., 2004, Svensen et al., 2007), and are therefore likely detectable using
remote sensing (e.g. Ciotti et al., 1999, 2002, Hirata et al., 2008 ). However, until the present study
there is no comprehensive radiative transfer treatment aimed at retrieving assemblage size and type
from R, in hypertrophic inland waters.

In comparison with hyper-eutrophic blooms, mesotrophic waters containing mixed assemblages
of phytoplankton of variable size and type and relatively larger contributions to the bulk IOPs from
NPP matter and gelbstoff present a more challenging case. These are water types that are typically
encountered in medium biomass conditions in optically-complex coastal and inland waters. The

R, signal is likely to be less sensitive to type and size owing to the smaller relative phytoplankton
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signal and spectrally variable and confounding optical signals. Conversely, there is likely to be more
sensitivity to the dissolved and NPP matter components given the relatively larger signal contribu-
tions. The same may be said for oligotrophic waters (chl-a < 10 mg m—?) which often have small
signals from phytoplankton relative to the high average contributions from gelbstoff and tripton.
For this reason the phytoplankton size and type is unlikely to be resolved with much sensitivity,

with assessment perhaps limited to biomass (chl-a) only.

§5.1.3 StupY DESIGN, AIMS AND OBJECTIVES

An inversion algorithm using the full RTE to retrieval the IOPs from the AOPs has so far not been
achieved (IOCCG, 2006). However, given the recent availability of radiative transfer models, such
as E-§, capable of solving the RTE with very fast computational times, inverse models directly solv-
ing for the RTE have become feasible. In this study, a hyperspectral inversion algorithm is devel-
oped in which E-Sis used to directly solve the RTE and calculate R, from the IOPs in combination
with a spectral matching approach based on a non-linear downhill simplex optimisation. The use of
E-S avoids the assumptions and some uncertainties associated with the REFA and é factor. Hyper-
spectral R,; measurements together with two-layered sphere model derived phytoplankton chl-a
specific IOPs (SIOPs) parameterised for assemblage size and species, are used to assess the sensi-
tivity to phytoplankton type and size in inland waters. The study tests the hypothesis that blooms
of cyanobacteria can be differentiated from eukaryotic phytoplankton from remotely sensed and
bio-optical data on the basis of unique spectral pigment-related absorption features and diagnostic
backscattering related to internal structure, i.e. gas vacuoles (see Chapter 4). The development of
a technique for distinguishing blooms of cyanobacterial species from those of eukaryote species
(see Chapter 2) is of considerable importance due to the large effect that toxin producing species
have on ecosystem and human health.

The study uses an in situ dataset of simultaneously measured R,;, IOPs, biogeochemical and en-
vironmental parameters from diverse South African inland waters. This includes data from hyper-
trophic high biomass blooms of M. aeruginosa and C. hirundinella in which phytoplankton is the
overwhelmingly optical dominant constituent, as well as from meso/oligotrophic waters contain-
ing mixed assemblages of phytoplankton of variable size and type and significant contributions by
gelbstoff and tripton. These data are used to test the study’s hypothesis and assumptions regarding
the resolution of phytoplankton assemblage size and type in high biomass, mixed meso/trophic
and oligotrophic waters. The aims of the study are therefore to evaluate the ability of a radiative-
transfer based inversion algorithm for differentiating small-celled M. aeruginosa cyanobacteria from
large celled dino C. hirundinella high biomass blooms, and to determine the feasibility of determin-
ing species composition in mixed dino/cyano assemblages. The aims of the study are achieved

through the following objectives:

1. derive plausible spectral m values for natural dino and cyano blooms using measured a, and
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estimated/measured PSDs;

2. using m, determine size-based SIOPs of dino and cyano populations using a two-layered sphere

model; and

3. develop an algorithm based on a radiative transfer inversion of R, and a bio-optical model us-
ing the two-layer model determined phytoplankton SIOPs for size and species composition re-

trieval.

The SIOPs used by the algorithm are derived from data from selected samples from high biomass
M. aeruginosa and C. hirundinella blooms. However, the data on which the algorithm performance
is tested esp. the mixed oligo/mesotrophic waters is independent. The study begins with a detailed
description of the data and methods used to determine phytoplankton m and size-based SIOPs
using the two layered model. These are discussed in the results section. The inversion algorithm is

then discussed and its evaluation is presented in the applications section.

5.2 METHODS

5.2.1 REMOTE SENSING REFLECTANCE

R,; was measured using an ASD FieldSpec® 3 Portable Spectroradiometer (ASD Inc., Bolder, CO)
using the protocols outlined in Mueller et al. (2003 ). The ASD has a spectral range of 350 to 2500
nm, with a spectral resolution of 3 nm at 700 nm and a noise equivalent radiance of 1.1 X 107° W
cm” >nm”'sr ' at700 nm. Measurements were only performed under mostly clear sky conditions
(cloud cover<20%) since cloud cover is known to impart large errors from shadows and other
effects (Doxaran et al., 2004, Mobley, 1999).

Ten radiance spectra were collected in sequence for Spectralon™ plaque, sky and water targets
in order to minimise the effects of wind and waves and temporal variability in surface reflectance.
Measurements were performed between 9 am and 12 pm using a viewing zenith angle of 6 = 40°
away from the sun azimuthally at ¢ =135°. Care was taken to ensure that the plaque was free from
shadow or reflectance effects from any source. Sky radiance was measured using the same viewing
angle to the zenith. The measurement procedure was performed three times in sequence with dark
readings taken between each sequence. The mean of the radiance spectra for each target was then
computed, taking care to exclude contaminated or outlying spectra. R,; was then calculated using

the mean spectrum for each target according to Mobley (1999):

7
Ry = (Lt - PLS)/(ELg) (5-1)
g
where L, is the water surface radiance, L; is the sky radiance, p is the proportionality factor for

the sky radiance to the reflected sky radiance on the water surface, L, is the radiance measured from
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the Spectralon™ plate, and R, is the Spectralon bidirectional reflectance function. The Spectralon™
plate was assumed to be Lambertian and a perfect reflector (Ry =0.99). The value of p is affected
by the wind speed, viewing geometry and cloud cover (Mobley, 1999). Since the wind speed of all

measurements was less than 5 m s a value for p of 0.025 was used (see fig. 9 in Mobley (1999)).

§5.2.2 ABSORPTION, BIOGEOCHEMICAL PARAMETERS AND PARTICLE SIZE DISTRIBUTIONS

The details of the sampling areas, strategy and methods for the determination of the biogeochem-
ical parameters and absorption coefficients are provided in detail in Chapter 3. Therefore, only a
brief overview is provided here and readers are referred to the aforementioned study for details.
The concentration of chl-a was determined spectrophotometrically following the method of Sar-
tory and Grobbelaar (1984). Seston (total suspended solids), and minerals (ashed dry weight) was
determined using the gravimetric technique (Environmental Protection Agency, 1983 ). Tripton
(non-living particulate matter) was determined from the seston, minerals and chl-a concentrations
using the method described in Chapter 3. The quantitative filter technique was used to determine
the absorption coefficients of pigmented (phytoplankton), non-pigmented (tripton) and gelbstoff
following the protocols outlined in Mitchell et al. (2003).

Particle size distributions were determined using a Multisizer-4™ particle analyzer (Beckman-
Coulter®) fitted with a 140 ym aperture. The 140 ym aperture allows accurate estimations for par-
ticles with diameters between 2.8 and 84 ym (2 to 60% aperture size), which is in the size range
of typical natural phytoplankton assemblages. Samples were kept cool and in the dark until anal-
ysis which was performed on the same day as collection. Fresh water samples were diluted using
Isoflow epics sheath fluid (azide free non-fluorescent balanced electrolyte solution) obtained from
BeckmanCoulter® to ensure conductivity. After dilution, 20 ml of sample was counted maintain-
inga concentration of between 2.5 and 10% with correction for particle coincidence. Blank particle
counts were measured using freshly 0.2 ym filtered lake water which was diluted with electrolyte
solution identical to that of the samples. Further data processing was performed using scripts writ-
ten in Python programming language. PSDs were corrected by subtracting the mean blank particle
counts which were scaled for dilution. PSDs in cells per liter were median filtered to reduce spik-
ing and interpolated onto linear spaced bins of 1 ym diameter through calculation of the spectral
density. PSDs were partitioned into algal and non-algal components using a numerical technique
(Bernard et al., 2001). The detrital distribution was estimated as a Jungian distribution with slope
of -4 and scaled to the minimum volume of the PSD between 1 and 7 yum. The detrital distribution
was then subtracted from the PSD to give the estimated phytoplankton size distribution. The ef-
fective radius (R.y) and variance (V) of the phytoplankton size distributions were calculated by
(Hansen and Travis, 1974):

[ [
o [ zrF(r)d(r) G/ PEd(r)
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where r is the particle radius in m, F(r) is the number of particles per unit volume (cells per
m?), and d(r) is the difference between the size bins in m. Ry (or Dy = 2 X Reff) is used to
describe a ‘mean’ particle size for the distribution from an optical perspective while V4 describes
the width of the distribution. For comparative purposes, the equivalent spherical diameter (ESD)
was estimated from microscope species counts using literature derived estimates of cell volumes

for individual species mainly from Reynolds (2006).

§5.2.3 COMPLEX REFRACTIVE INDICES OF PHYTOPLANKTON

The complex refractive index is composed of real () and imaginary (n’) parts according to m =
n — in’ and is the primary factor along with cell size governing light scattering of small particles
including phytoplankton (Morel and Bricaud, 1986). In this study it is required for use with a two-
layered sphere model which is used to derive the VSF and (back)scattering volume coefficients
for natural phytoplankton populations. Since phytoplankton are modelled as two-layered spheres
and not homogeneous spheres, values of m are required for both the inner sphere layer (core) and
the outer layer (shell). For simulations of prokaryotic gas-vacuolate cyano cells the two layers are
assigned to an internal gas vacuole surrounded by a chromatoplasm as in Chapter 4 using a relative
volume for the gas vacuole core layer, V, of 50%. For simulating eukaryotic cells the core and shell
layers are assigned to a cytoplasm and chloroplast, respectively after Bernard et al. (2009) using
a chloroplast relative volume shell layer, V;, of 30%. Analysis of the effects of varying the relative
core:shell volumes for the vacuole/chromatoplasm configuration can be found in Chapter 4 and

are assessed here for the eukaryotic chloroplast/cytoplasm assignment.

IMAGINARY REFRACTIVE INDICES

The homogeneous imaginary refractive index, n;,,, was determined for natural cyano and dino
phytoplankton blooms using the inverse anomalous diffraction approximation (ADA) method of
Bricaud and Morel (1986) as described in Chapter 4. A mean M. aeruginosa dominant sample from
Hartbeespoort was used for gas-vacuolate cyanos, while two discrete samples from a high biomass
C. hirundinella bloom obtained from Loskop at the same sampling location on two different days
at similar times, were used for dinos. The experimental mean absorption efficiency factors, Q,,
were computed from measured a, phytoplankton PSDs. #;,,,, was computed through fitting the
absorption efficiency factor, Q,, modelled using the ADA to Q,. The PSD for M. aeruiginosa was
not measured due to difficulties associated with the colonial arrangement of the cells and their
existence at extremely high biomass in a surface scum layer. Therefore the PSD was estimated using

a log-normal distribution with Ry = 2.5 and V. = 0.02 (see Chapter 4 for further details). For
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C. hirundinella the PSDs were measured using the Multisizer-4™ The two discrete C. hirundinella

samples allowed for a comparative assessment of the method used to determine n} .

!/

Chmm) and dino chloro-

Using nj,,,,, corresponding values of n’ for the cyano chromatoplasm (n

!/

! vioro) Were derived using volume equivalence (Bernard et al., 2009). The volume equiv-

plast (n
alence approach scales n;,, by the volume occupied by the absorbing layer according to: n, =
(Mo — 1.V5)/(1 — V;), where n is the value determined for the absorption shell layer (chro-
matoplasm/chloroplast) and n is the imaginary refractive index of the core vacuole/cytoplasm

4.66

layer. The vacuole n’ was set to 2.28 X 1071 *°° while that for the cytoplasm was set to 0.0005 X

exp(—o0.01(1 — 400)) (Bernard et al,, 2009). In addition to the volume equivalence determina-

!/

tions, an inverse solution using the two-layered sphere model was also used to determine n;,,,

for the dino (Bernard et al., 2009). The method solves for n,,, . through fitting Q, determined

directly by the two-layer model to Q, using the measured phytoplankton absorption and PSD, and

assumed values for n for the chloroplast and cytoplasm (see below). The volume equivalence and

/

two-layer determined ;.

were then compared.

REAL REFRACTIVE INDICES

In terms of the theory of anomalous dispersion (van de Hulst, 1957), the spectral variation in n
denoted An in the vicinity of absorption bands is said to vary around a central value denoted 1 + ¢
according to n = 1+ ¢ + An (Morel and Bricaud, 1986). An predicted by the Kramers-Kronig or
Ketteler-Helmholtz theories can be determined as a Hilbert transform of n’ (Bernard et al., 2001),
while a plausible value of 1+ ¢ for ahomogeneous spherical cell can be determined provided the at-
tenuation efficiency factor, Q,, is measured to constrain the selection (Ahn et al., 1992, Bricaud and
Morel, 1986). Given that no Q, data were available to this study, and that phytoplankton are mod-
elled as inhomogeneous two-layered spheres, values for n were not determined using this method.
Alternative methods for determining the value of 1 + ¢ based on convergence of modelled Q, and
the non-absorption equivalent, Q¥4% after Bernard et al. (2001) are likely sub-optimal. Therefore
estimates of the chromatoplasm 1 + ¢ value for cyano were determined as described in Chapter 4
through providing optical closure for measured R, and R, estimated using IOP data and E-S.

There is significant justification for this method as discussed in the aforementioned study. How-
ever, this method was not used for C. hirundinella for the following reasons: there were background
concentrations of other phytoplankton species present; tripton and gelbstoff were significant con-
tributors to the absorption and scattering budgets meaning that the blooms cannot from an optical
perspective be treated as mono-specific“cultures” (see fig. 3.3.18 in Chapter 3). Given the larger
uncertainties that would arise from these sources of variability, the method was determined infea-
sible for estimating the dino chloroplast 1 + ¢ value. Test simulations confirmed that the method
was unsound given the optical complexity of the water.

Therefore, literature derived values were used to estimate the dino chloroplast 1+ value (Bernard

et al,, 2009). Experimental data suggests that large dinos may have substantially higher b, than
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Mie theory predicts for large cells, and has been attributed to unusual internal structure from chro-
mosome morphology, unique nucleus arrangements and higher intracellular carbon concentra-
tions (Vaillancourt et al., 2004, Whitmire et al,, 2010). These findings encourage an elevated over-
all homogeneous  for large dinoflagellates such as C. hirundinella which would increase spectral
backscattering. Therefore, a range of chloroplast 1 4 ¢ values varying from 1.10 to 1.14 were tested
while varying the chloroplast volume between 20 and 30%. Following analysis the 1 4 ¢ value was
set to 1.12, equivalent to the value of the cyano chromatoplasm, with V;=30%. The corresponding
overall homogeneous dino 7 is 1.05, within the accepted range for homogeneous phytoplankton
cells (Aas, 1996).

The values of  for the core layer cyano gas vacuole was set ton = 3331~ "** 4 0.82 while 1+ ¢ for
the dino cytoplasm was set to 1.02 (Bernard et al., 2009). An was computed as a hilbert transform

of .

5.2.4 PHYTOPLANKTON IOPS DERIVED FROM A TWO-LAYERED SPHERE

The two-layered sphere model is likely the simplest geometry capable of simulating phytoplankton
I0Ps, given that Mie models are generally known to be unsatisfactory (Whitmire et al., 2010, Zhou
etal, 2012). The two-layered sphere model was used to derive the VSF and volume coefficients
for the M. aeruginosa and C. hirundinella samples. Details of the model are provided in Chapter 4
and in Bernard et al. (2009).

The intracellular chlorophyll concentration (c;) is used in the model to scale the chromato-
plasm/chloroplast n’ according to V, and the theoretical unpackaged chl-a absorption maximum

at 675 nm, a’,(675), set to 0.027 mg " m~* (Johnsen et al.,, 1994):

675 Ciflgy(675)
Nmedia 77:4V5

nihrom/chloro (675) =

¢; is also used to normalise the PSD and volume coefficients to produce chl-a specific PSDs and
IOPs. Thus its value has a large impact on the model through effectively varying the number of
particles absorbing/scattering light. The value of ¢; for M. aeruginosa was set to 2.1 kg m™3 (Zhou
etal, 2012). For C. hirundinella c; was computed using the measured absorption and PSD data

according to:

¢=C E / h F(d)d%i(d)] h (5.2)

where Cis the chl-a concentration in mgm™3.

The ¢; values were used to derive the SIOPs for M. aeruginosa and C. hirundinella.

In addition to modelling the IOPs of the discrete samples, the two-layered model was used to
determine hypothetical size-variant SIOPs for populations of cyanos and dinos. The size-specific

SIOPs were derived using the aforementioned values of m for core/shell layers which are assumed
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to be representative of generic cyano and dino species. The expected size variability of common
freshwater nano-micro cyanophytes ranges from d approx. 2.5 ym (Aphanizomenon) to d approx.
44 pm (per 1 mm filament Planktothrix) (Reynolds, 2006). The size range overlaps that of com-
mon filamentous gas-vacuolate cyanophytes such as Dolichospermum and Oscillatoria which are
generally better modelled using infinite cylinders than homogeneous spheres (Schagen, 1997).
However, it is not known how the two-layered sphere might perform in comparison to the infinite
cylinder configuration for filamentous gas-vacuolate cyanophytes. Nevertheless the size-variable
simulations aim to capture in a simplified form the expected optical variability resulting from as-
semblages with diverse gas-vacuolate cyanophyte species (such as occurs in Theewaterskloof). For
freshwater dinoflagellates a similar size variability is expected in nature with d ranging from approx.
8 um for Gymnodinium spp. to 44 um for C. hirundinella (Reynolds, 2006).

It has been shown that single size distributions parameterised by Dy and V. are suitable for
representing mixed phytoplankton assemblages in optical modelling (Bernard et al,, 2007). Ac-
cordingly, PSDs with D ranging from 1 to so ym at a 1 ym resolution were used to simulate the
size variability of polydispersed cyano/dino populations. The population of cells had diameters
ranging from 1 to 100 ym at a 1 ym interval, in the range of nano-micro plankton. The standard

size distribution expressed in terms of R, and V¢ was used according to (Bernard et al., 2001):

F(r) = 073V Veblexp (r/ (R Vi)

Vs was set to a constant value of 0.6 determined as the mean of measured PSDs in Loskop and
Theewaterskloof. This is near to the value of 0.63 suggested for use by Bernard et al. (2001). The
PSDs were scaled to determine the number of particles corresponding to 1 mg chl-a m™3 using the

aforementioned estimates for ;.

5.2.5 INVERSE METHODS USING E-S RADIATIVE TRANSFER MODEL

The schematic for inversion algorithm showing the bio-optical model, use of E-S and optimisation
procedure is shown in fig. 5.2.1. The algorithm is based on that of Bernard (2005) but is modified
for freshwater cyano and dino types and to use E-S to solve the RTE.

E-S is a version of the Hydrolight radiative transfer model that solves the azimuthally averaged
RTE with fast run times. Quick computational time is essential as E-S is called iteratively to cal-
culate the R, using variable IOP inputs. For this study a spectrally variant Fournier-Forand phase
function dependent on the value of by,:b was used (Fournier and Forand, 1994). This approach was
found to provide improved optical closure in optically-complex waters than alternative phase func-
tion definitions in Hydrolight (Gallegos et al., 2008, Mobley et al., 2002, Tzortziou et al., 2006).
The Radtran Sky irradiance model (Gregg and Carder, 1990) in E-S was used to compute the
downwelling irradiance (E;). In situ measurements of atmospheric pressure, total precipitable wa-

ter vapour column in cm (WV), and aerosol optical thickness (AOT) made using a Microtops 11
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Figure 5.2.1: Schematic diagram for the radiative transfer inversion algorithm. Blue repre-
sents measured or estimated inputs, cyan represents variables solved for iteratively, red rep-
resents calculations and green represents outputs. The 2 pt. arrows represent the iterative
process followed by the algorithm. tol. = tolerance, for other variables, see text.

sun photometer (Solar Light Co.) corresponding to each R,, spectrum were used (where avail-
able). Horizontal visibility was calculated from AOT at 550 nm according to 3.9449/(A0Tss50 —
0.08498) (Retalis etal., 2010). Relative humidity was estimated from WV according to 18WV + 40
(calculated using data in Raj et al., 2004). Cloud cover was estimated in % and a continental aerosol

model was used.

The inputs to E-S are the total absorption, scattering and backscattering (a;, by, by) of the wa-
ter as well as the incident downwelling irradiance (E;) assuming the water is optically deep (no
bottom effects). In E-S the IOPs are assumed to be constant with depth within homogeneous lay-
ers. Although it has been shown that the vertical profile of the IOPs has a significant effect on the
observed R, signal (e.g. Kutser et al., 2008, Stramska and Stramski, 2005, Zaneveld et al.,, 2005)
the turbid waters investigated in this study typically have very large optical depths, with chl-a >
10 mg m~? and Secchi disk depths less than 2 m (maximum of approx. 8 m for a few clear water
samples). Therefore it is assumed that the bulk optical signal is derived from the upper 2 m of the
water column, which is well represented by IOPs measured at the water surface.

The phytoplanton IOPs were calculated as an admixture of cyano and dino populations from
the size-based SIOPs generated for Dy between 1 and so ym. The value of D, is independent for
cyano and dino populations in order to simulate assemblages composed of a mix of small cyano

(e.g. M. aeruginosa) and large dino (e.g. C. hirundinella) species, as occurred in this study. The



assemblage species composition is computed using T, the phytoplankton admixture coefhicient
varying between o and 1. This enables simulation of assemblages dominated either by cyano or
dino species or a mixture of both. C, the concentration of chl-a in mgm™3, calculates the total phy-
toplankton IOPs from the SIOP admixture. The phytoplankton volume coefficients were therefore

calculated as:

ip = C X [Ti:;c(DEJ_’fC) + (11— T)i;d<Deﬁd)]

where i can be replaced by either a, b or by, and subscripts ¢ and d stand for cyanos and dinos,
respectively.

It is possible to directly determine the TR (or NPP) component as a parameter in the inver-
sion scheme using the mass-specific tripton absorption, scattering and backscattering coefficients
which are then scaled using the TR concentration. Such an algorithm was built and tested but was
not used for the following reasons: firstly the absorption signals from gelbstoff and TR (only dif-
fering in the slope coefficient, S) are hard to resolve due to their similarity; secondly, the approach
cannot account for potential contributions to backscattering by non-tripton non-phytoplankton
particles (e.g. very small particles, bubbles, bacteria); the variability in the mass-specific tripton
volume coefficient was significant between the study areas owing to variable mineral:detrital ratios
(Matthews and Bernard, 2013a) and therefore could not be sufficiently described by a set of mean
coeflicients. Improved optical closure was obtained using a coupled absorption term for gelbstoff
and TR, termed dg,, and a separate term accounting for NPP (back)scattering, termed by, and
bonpp-

ager was calculated using an exponential function as:

—S(—
gty = ager(442)e SH7442)

where S is the slope coeflicient equal to the mean value of 0.013 determined in the study areas
(see Chapter 3). agtr(44z) was constrained to vary inside a range of 0.2 to 6.0 m™*, appropriate to
the study areas.

The power-law function has been determined to provide a close fit with measurements of the
particulate backscattering (b, ) in coastal and inland waters (e.g. Snyder et al,, 2008, Sun et al,,

2009). Thus bonpp Was calculated by the power-law function:

bonpp = bonpp(560) X (A/560)"

where 7 is the slope coefficient.

The value of y typically ranges from o to -2 nm ™" with a mean value near -1 (ibid.). A range of
values for by, (560) and y were tested to provide the best optical closure. In order to facilitate
calculation of by, without the introduction of another variable in the optimisation procedure, by,

was calculated as:



1
bupp = = X bpnpp

bnpp

where l;b,,pp is the ratio bypp:bupp.

Based on a review of studies performed in complex waters, from sediment-dominated coastal
waters to turbid eutrophic lakes, the value of b;,p ranges from approx. 0.5 to 7% (McKee et al,,
2009, Neukermans et al., 2012, O’Donnell et al,, 2010, Snyder et al., 2008, Sun et al., 2009) (these
studies refer to the bulk particulate matter (back)scattering, and not NPP as used here). A spec-
tral dependency of b;p has been noted by some authors (McKee et al., 2009, Snyder et al., 2008)
although this is somewhat disputed (Whitmire et al.,, 2007). In turbid productive waters b;p has
been reported as being inversely proportional to the inorganic or mineral component of suspended
matter and has little correlation with chl-a (Sun et al., 2009), typically varying between 1 and 2%.
As phytoplankton typically scatter relatively little in comparison with hard mineral particles, b,,,
is likely to differ only slightly from b,, except in high biomass waters. It is also probable that b,
has less spectral dependence than b, which includes phytoplankton. Therefore a spectrally flat b;p
with values ranging from 1 to 5% were assessed in the calculation of b,,.

A four component bio-optical model was used to calculate the total volume coefficients for E-S

according to:

ay = dp + dgyy + ay
be = by + byyp + by,
by = bhcp + blmpp + bbw

where w stands for water.

The bio-optical model contains six variables, namely C, T, D¢y, D4, bbnpp( 560) and agtr(442) ,
constrained in various value ranges. These are solved for using a Nelder-Mead downhill simplex
non-linear optimisation algorithm by fitting R, calculated using E-S to the measured R, spectrum
between 400 and 800 nm. The fit between the measured and modelled R; is calculated using the

Euclidian distance and a wavelength weighting function, f(1):

d(x,y) = Zf(li) X (o = yil)?

where x and y are the measured and modelled spectra, respectively. f(2) is used to assign a weight
of 1% in the fitting procedure to wavelengths in the chl-a fluorescence domain from 680 to 695 nm
as fluorescence is not accounted for by E-S.

The simplex algorithm iterates until the estimated variables change by less than the tolerance
level which was 1 X 10—6. The algorithm performance was evaluated by comparing the modelled

and measured values of the absorption coeflicients, chl-a, D¢ and ESDs using a non-parametric



correlation, as the variables were non-normally distributed. Phytoplankton species counts corre-
sponding to each spectrum were used as an indication of species composition. The estimated mean
assemblage D was calculated as TD ¢ + (1— T)Deffd. The inversion algorithm was implemented

in Python programming language and E-S was called as a subroutine.

5.3 RESULTS AND DISCUSSION

§5.3.1 VARIABILITY IN PHYTOPLANKTON, R,AS AND ABSORPTION

The measured R, spectra for the three reservoirs are shown in fig. 5.3.1 alongside histograms cor-
responding to the measured chl-a and absorption coefficients at 442 nm. The spectra from Loskop
(LK) are from waters primarily dominated by the large celled dino C. hirundinella which vary from
oligotrophic to hypertrophic states (chl-a of 0.5 to 500 mg m ™). Those from Hartbeespoort (HB)
were measured during a hypertrophic mono-specific vacuolate M. aeruginosa bloom which had
chl-a ranging from 70 to 13 ooo mg m™3. The M. aeruginosa bloom existed as dense aggregated
surface accumulations (or scum) which was mixed into the water column depending on the pre-
vailing wind conditions. Theewaterskloof (TW) waters were meso/eutrophic (chl-a from 5 to 35
mgm ™ *) with a mixed phytoplankton population dominated by the large dino Sphaerodinium fim-
briatum (ESD==+ 40 um), the filamentous vacuolate cyanophyte Anabaena ucrainica (ESD== 16
pm) and various diatom species (see Chapter 3 for details). TW waters also had a higher mean
mineral content of tripton (65% non-phytoplankton dry mass). Therefore, the LK and HB data
represent cases of dominance by a large dino and a small vacuolate cyano, respectively, whereas the
TW spectra present a case of a mixed population of alarge dino and a small/intermediate vacuolate
cyano species and higher mineral content. The variability in phytoplankton and water constituent
composition is the cause of the observed differences in magnitude and shape of R,;, which are now
discussed.

R,s from HB and TW have significantly higher magnitudes between 400 and 700 nm than those
from LK (see fig. 5.3.1 C).R,(560) ranged from 0.018 t0 0.048 sr™* for HB, from 0.013 to 0.026 sr™*
for TW and from 0.003 to 0.011 st * for LK. Since the waters in HB had insignificant contributions
from constituents other than M. aeruginosa, this observation might be explained by the small cells
which contained intracellular gas vacuoles which cause elevated spectral backscattering (Matthews
and Bernard, 2013b). In the case of TW, the elevated backscattering may also result from a higher
mineral content of suspended matter in addition to vacuolate A. ucrainica. The reduced magnitude
of R, for LK is in accord with Mie theory which predicts reduced backscattering from larger cells
(van de Hulst, 1957). Another noticeable feature is the non-negligible signal at wavelengths > 750
nm typical of turbid waters. The HB spectra with NIR signals > 0.1 st were measured over dense

surface scum. These spectra resemble those of dry vegetation as a result of negligible absorption by
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Figure 5.3.1: R, for A) Loskop, B) Hartbeespoort and C) Theewaterskloof with histograms
for corresponding D) chl-a, E) a,(442), F) a,(442) and G) a4(442). Spectra from all three
reservoirs are overlaid in C for comparison of shape and magnitude.
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water (e.g. Kutser et al,, 2008, Tebbs et al,, 2013 ). Therefore the NIR signal in these turbid waters
are significant which has important implications for atmospheric correction of remotely sensed

radiances (e.g. Shi and Wang, 2009).

Selected spectra representative of the different species at similar biomass were normalised at 440
nm (soret chl-a absorption peak) for investigation of the variability in spectral shape (fig. 5.3.24).
In addition the second derivative of the spectra were calculated and smoothed using a median fil-
ter with a 9 nm window size in order to identify the pigment absorption features after Maldonado
(2008) (fig. 5.3.2B). Absorption of light by different phytoplankton pigments can be determined
as the primary cause of the observed differences in spectral shapes. M. aeruginosa posses distinctive
phycobiliproteins phycocyanin (PC) and phycoerethrin (PE) absorbing strongly in the range 550
to 650 nm and are devoid of chlorophyllous pigments besides chl-a. C. hirundinella possess pig-
ments chl-c, carotenoids peridian and fucoxanthin and xanthophylls diadinoxanthin and diatoxan-

thin which absorb light in the region 440 to s50 nm (Richardson, 1996, Schluter et al., 2006).

A number of distinctive features in the R, arise as a consequence of this unique pigmentation
(see fig. 5.3.2A). Firstly, cyano-dominant waters (HB) possess a marked trough in the region 600
to 650 nm as aresult of absorption by PE and PC. Correspondingly these spectra also have a marked
peak near 650 nm resulting from proximal PC and chl-a absorption bands at 620 and 665 nm, re-
spectively, and potential phycobiliprotein fluorescence as speculated by Matthews et al. (2012).
This peak might be used to distinguish cyanobacteria from algae as shown in Chapter 2 of this the-
sis. Furthermore, there is a shift in the green peak < 550 nm as a result of PE absorption. For
dino-dominant waters (LK), strong absorption by accessory pigments results in reduced R, in the
region 440 to 550 nm. The absence of PC and PE mean that R,, is enhanced in the region 550 to
650 nm and the green peak is situated further towards the red near 560 nm. In addition to pigment
absorption, sun-induced pigment fluorescence is likely to be an additional process leading to dif-
ferences in R,,. In particular, cyanobacteria are known to possess reduced chl-a fluorescence as a
result of various photophysiological processes (Seppili et al., 2007). This is evident by a trough in
R, near 685 nm, which has also been used as a marker for cyanos (Matthews et al., 2012, Wynne
etal, 2008). In summary, changes in the position of the peak near 560 nm, the presence or absence
ofapeak near 650 nm, and features related to chl-a fluorescence are the primary spectral differences
in waters dominated by cyanos versus dinos. The TW spectra have features corresponding to both
cyano and dino pigmentation although these are less apparent (fig. 5.3.2B). The green peak located
near 560 nm is indicative of strong accessory pigment absorption in the region 450 to 550 nm, and
the presence of a small peak at 650 nm is evidence of PC absorption near 620 nm. The sensitivity
of the inverse problem to resolve distinctive pigment features is assessed in section §.4.2.

The histograms in fig. 5.3.1 indicate the expected range of variability that might be encountered
for chl-a, a,(442), a(442) and a,(442) in the waters under investigation. This information is es-
sential for constraining the inverse retrieval of parameters. Chl-a and a,(442) vary widely over

5 orders of magnitude. The distributions are bimodal with peaks near chl-a of 10 and > 100 mg
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m ™3, the latter of which represents the high biomass blooms in HB and LK. The widest range of
values is encountered in LK, while those of TW and HB are in the mid and upper ranges, respec-

1

tively. a;,(442) varies inside the range 0.1 to 2.3 m ™" with the highest probability value near o.5

m™". ay(442) for TW occupies the upper range of values while that for HB occupies the lower
range, with LK having the widest variability. For a,(442) the highest probability value is near 1
m™ ' within a range of 0.4 to 3 m ™', with LK occupying the lower range and TW and HB the upper
range of values. These ranges we used to constrain the parameter estimates during the non-linear

optimisation procedure.

5.3.2 COMPLEX REFRACTIVE INDICES OF C. HIRUNDINELLA AND M. AERUGINOSA

The measured SIOPs for C. hirundinella and M. aeruginosa are shown in fig. 5.3.3A. The reduced
pigment packaging from the small cells size of M. aeruginosa results in a higher value for a; (675) of
0.023, more than double than that for the large celled C. hirundinella samples of 0.0089 m> mg™*.
The large difference in cell size is visible in the estimated and measured phytoplankton volume
distributions in fig. 5.3.3B. Dy for M. aeruginosa is 5.2 ym based on measurements by Robarts
(1984), while that measured for the two C. hirundinella samples are 29.6 and 30.9 ym. The ESD
of C. hirundinella however is between 35 and so ym. The unimodal volume distributions show the
overwhelming dominance of C. hirundinella, with relatively insignificant contributions by small
cells. The significant differences in pigmentation, discussed above with respect to R,s, are also ap-
parent in the a; spectra. The calculated experimental Q, demonstrate the considerably different
optical behavior of the two species. C. hirundinella has considerably larger absorption efficiency
relative to M. aeruginosa, resulting from the larger geometrical cross-section. There is very close
agreement in Q, between the two independent C. hirundinella samples.

The ADA estimated 1}, and fitted Q, (+) spectra are shown in figs. 5.3.3 C and D. The magni-
tudes of nj ,, compare closely with those estimated by Zhou et al. (2012) for freshwater species us-
ing the same methodology. The volume equivalence determined chloroplast and chromatoplasm
n’ are shown in fig. 5.3.3E. The difference in values for dino chloroplast and cyano chromatoplasm
arise from the use of different shell volumes and differences in #’ for the dino/cyano core layers.
110, (440) determined using the two-layered model approach are close to those calculated by vol-
ume equivalence, with small differences in the blue. The spectral n for the dino chloroplast and

cyano chromatoplasm layers are shown in fig. 5.3.3F.

5.3.3 SIOPs oF C. HIRUNDINELLA AND M. AERUGINOSA

Fig. 5.3.4 shows the SIOPs determined by the two-layered sphere using the data in fig. s5.3.3.
The coefficients for the two independent C. hirundinella samples are close, suggesting good repro-
ducibility of the method used here. Spectral attenuation for M. aeruginosa is considerably larger

than that for C. hirundinella as a result from larger (back)scattering. c;( §10) is 0.32 m™~* for M.
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Figure 5.3.3: Derivation of complex refractive indices for M. aeruginosa and two C.
hirundinella samples. A) Chl-a specific absorption, B) chl-a specific phytoplankton volume
distribution, C) measured versus modelled (+) Qu, D) n),,,., E) n’ for M. aeruginosa chro-
matoplasm for cell with 50% gas vacuole volume and for C. hirundinella chloroplast with 30%
cell volume derived using volume equivalence (solid) and two-layer model (dashed) methods,
F) n showing An for cyano chromatoplasm and dino chloroplast layers.

aeruginosa an order of magnitude higher than C. hirundinella which is 0.028 and 0.034 m™*. Simi-
larly, b;(s 10) is 0.3 versus 0.02 m ™~ * while bZ(P(s 10) is 0.005 5 versus approx. 8 X105 m™’, respec-
tively. Therefore by, is more than 2 orders of magnitude higher for M. aeruginosa resulting from the
small cell size and internal vacuole structure (Matthews and Bernard, 2013b). The C. hirundinella
by, spectra have more spectral shape with enhanced values in the NIR, as has been determined for
other large celled species (Dierssen et al., 2006). There is a close match between the measured and
modelled af; (fig. 5.3.3C).

The effects of varying the dino V; and chloroplast 1-+¢ values on the efficiency factors and specific
volume coeflicients for (back)scattering are shown in fig. 5.3.5. Q; in the expected range between
1 and 2 (there were insignificant effects on Q,, not shown). There is no clearly discernible effect of
chloroplast volume (V;) on Q; other than changes in spectral shape. For Qy;, and by, the changes

are mostly related to magnitude with little change in spectral shape: Qy;, increases independently of
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Figure 5.3.4: Chl-a specific volume coefficients for M. aeruginosa and C. hirundinella derived
from the two-layered sphere model. The dinoflagellate was modelled with chloroplast 1 + «¢

= 1.12 and Vi = 30% using the measured PSD in fig. 5.3.3. The cyano was modelled with

a gas vacuole volume of 50% and chromatoplasm 1 + ¢ = 1.12 after Matthews and Bernard
(2013b). Dotted lines in C are measured aj.
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Figure 5.3.5: Effects of variable 14+¢ and chloroplast volume on the efficiency factors and chl-
a specific coefficients for scattering and backscattering for C. hirundinella 0808 sample derived
from the two-layered sphere model using the measured size distribution. Dotted lines are for
V, = 20% and solid lines are for V, = 30%.

wavelength for larger 1 + ¢ and V; values, the latter effect being smaller than the former. Therefore
the value of 1 + ¢ of the shell layer has a larger effect on Qy than its volume. bz¢( s10) for V;
= 30% increases from 4.86 X107 m ™" for1 + ¢ of 1.1 to 9.95 X107 m ™" for1 + ¢ of 1.14. The
changes in Q;, can be explained by the sensitivity of the VSF in the forward direction to 1 + ¢, the
changes in spectral shape being caused by interference oscillations which are wavelength (and size)
dependent (Morel and Bricaud, 1986). Conversely, there is less sensitivity to these effects in the

backward direction resulting in little change is spectral shape.

The results from the two-layered model for M. aeruginosa are discussed in Chapter 4 and are
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therefore not discussed in detail here. The values of Q,(510) = 1.57 and Q;(510) = 0.0055 de-
rived for C. hirundinella do not agree with the high values of measurements made on the large di-
noflagellate C. longpipes (ESD = 55 ym) by Whitmire et al. (2010) which had values of 2.325 and
0.061, respectively. Similarly large values were determined by Vaillancourt et al. (2004) for Alexan-
drium tamarense (ESD = 31 ym) which had Q5 (510) of 0.0148. The explanation for these enlarged
values was provided as resulting from unusual internal structure and high cellular carbon content.
However, if such high backscattering existed for C. hirundinella in the same order of magnitude as
for M. aeruginosa, this would be reflected in similar R,; magnitudes for blooms of similar biomass.
However fig. 5.3.1 indicates that R, is substantially smaller for the C. hirundinella bloom than that
for M. aeruginosa. This supports a smaller value of Qy; and by, for C. hirundinella, in contrast to the
results of Vaillancourt et al. (2004 ), Whitmire et al. (2010).

The results obtained here agree better with those of Zhou et al. (2012) who found Q;(510) =
1.68 and Qu,(510) = 0.003 for the small (ESD = 5 ym) dinoflagellate Amphidinium spp. It could
be possible that this species and C. hirundinella sampled in this study did not possess unusual inter-
nal structure or high intracellular carbon content. However the finding of Whitmire et al. (2010)
that C. longpipes has a bZ¢(5 10) of 0.0097 m ™7, larger than that of M. aeruginosa as measured by
Zhou et al. (2012) is in the author’s opinion, anomalous. Contrasting findings are present in the
literature, for example, the large (d from 20 to 40 ym) HAB forming K. Brevis is known to pos-
sess low backscattering with a value of bZP(488) near 2X10~ * m™* (calculated from data presented
in Schofield et al., 2006); values for bzp reported in a C. balechi bloom were near 1X10™* m™*
(Matthews et al,, 2012); and dinoflagellate bloom colour modelled by Dierssen et al. (2006) have
a taxon by, near 3 X10™* m™", smaller than for other taxons. There is also a lack of accompanying
evidence in the literature from natural dino blooms indicating that these species possess enlarged
backscattering as a distinctive feature as reproduced in enhance R, (e.g, see measured spectra in
Dierssen et al., 2006). The influence of contamination by highly scattering small non-algal parti-
cles, e.g. broken cellulose thecal plates, in cultures could be the source of the unusually observed
high backscatter efficiency measured by Whitmire and others for dinoflagellates, as suggested in
Whitmire et al. (2010).

5.3.4 SIZE VARIABLE PHYTOPLANKTON SIOPs

The phytoplankton SIOPs for cyano and dino populations for variable D4 determined by the two-
layer model are shown in fig. 5.3.6. The expected variability related to size is demonstrated in the
SIOPs, with reduced aj for a population of larger cells related to the package effect, and enlarged
bg and by, for populations dominated by small cells. The coefficients for the cyanos are larger than
those for dinos with equivalent D . a (440) for cyanos with D gof 25 ymare 0.018 m ™" versus that
of 0.013 m™ for dinos. Similarly bf;(séo) and bZ¢(56o) are 0.052 and 0.036 m™*, and 7.8 X10™*
and 2.2 X10”* m™, for cyanos and dinos respectively. Therefore a cyano population has roughly

four times the backscattering of the size equivalent dino population. This is expected since the
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intracellular gas vacuole structure enlarges the spectral (back)scattering (Matthews and Bernard,
2013b). The size-variable SIOPs were used in the inversion algorithm to assess the sensitivity to

size and type in mono-specific and mixed populations of dinos and cyanos.
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Figure 5.3.6: Chl-a specific volume coefficients for cyano and dinoflagellates for Dg from 1
to 50 um modelled using a two-layered sphere. The cyano had a gas vacuole volume of 50%,
chromatoplasm 1 + ¢ = 1.12, and standard size distributions with V. = 0.5. The dino had a
chloroplast 1 + ¢ = 1.12, V; = 30% and standard size distribution with V. = 0.5. The value
of ¢; was constant for the cyanos and dinos at 2.1 and 3.2 kg m™3, respectively.

5.4 APPLICATIONS

5.4.1 SENSITIVITY OF SIZE AND TYPE DETECTION TO INITIAL CONDITIONS

The spectral region from 500 to 650 nm typically contains the most information for type (and pos-
sibly size) detection, since the diagnostic pigment absorption features are most apparent at these
wavelengths (see fig. 5.3.2). Therefore successful type (and size) detection was largely determined
by whether the algorithm was able to resolve (provide a good match of) spectral features at these
wavelengths. The initial values for Dy and D,g; were fixed at 5 and 31 um appropriate for M.
aeruginosa and C. hirundinella dominant waters, respectively. The convergence of the measured
and modelled R, and the retrieval of type and size was highly sensitive to the initial values of the
six variables solved for by the algorithm. This illustrates that the inverse problem and its solution
through the inversion model was ambiguous. Initial conditions providing good optical closure
and acceptable phytoplankton size and type detection across the diverse water types were there-

fore determined after testing a range of plausible initial values (table 5.4.1). The table illustrates
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the sensitivity of the algorithm in terms of size and type detection to variations in a single initial

condition while holding all other initial conditions constant at their default values (first row).

Table 5.4.1: Sensitivity of the inversion algorithm to initial conditions for resolving size and
type. High sensitivity indicates a significant change (better or worse) in the retrieval of size
and type from the default values used in the first row. Bold text indicates the variable being
tested while others are held constant. emp = empirical, norm=normal wavelength weighting.
See text for discussion.

C T bonpp(560) 7 1/bonpp  agir(440) flx) Sensitivity
mgm™3 m* m~*

emp 0.5 0.1 o 50 2.5 norm Default
10 0.5 0.1 o 50 2.5 norm High
100 0.5 0.1 o 50 2.5 norm Low
emp 0.95§ 0.1 o 50 2.5 norm High
emp 0.0§ 0.1 o 50 2.5 norm High
emp 0.5 0.001 o 50 2.5 norm High
emp 0.5 0.01 o 50 2.5 norm High
emp 0.5 0.5 o 50 2.5 norm High
emp 0.5 0.1 -0.§ 50 2.5 norm High
emp 0.5 0.1 -1.2 50 2.5 norm High
emp 0.5 0.1 o 10 2.5 norm Medium
emp 0.5 0.1 o 100 2.5 norm Low
emp 0.5 0.1 o 50 0.5 norm Medium
emp 0.5 0.1 o 50 4 norm Medium
emp 0.5 0.1 o 50 2.5 §00-650 Low
emp 0.6 0.1 o 50 2.§ norm Optimal

The algorithm was highly sensitive to the initial value of T, which was varied between o0.05 and
0.95 simulating both dino and cyano dominance, and mixed populations. A bias towards cyano-
dominance provided excellent resolution of M. aeruginosa bloom spectra, and vise versa. Using a
single value of 0.6 for T representative of a mixed assemblage provided acceptable differentiation
between dino and cyano-dominant spectra (see discussion in section 5.4.2). Variations in the initial
value used for C also had a large affect on the algorithm type and size estimates. An empirical
algorithm using the reflectance ratio R1 = R,(710):R,s(665) derived from the dataset of form C =
—6.1R1*+91.3R1—47.7 constrained to alower limit of 1 mg m™3, was tested against constant values,
and found to be more optimal. The empirical first guess for C enabled the algorithm to converge
more rapidly towards a solution.

The slope and magnitude of NPP (back)scattering significantly affected the algorithms ability
to resolve spectral features in the 500 to 650 nm region. More sloped spectral gradients resulted
in significantly poorer type detection presumably through the introduction of additional spectral
shape and noise. A spectrally invariant (flat) spectrum resulted in much improved spectral reso-
lution and greater sensitivity to type and size. Higher initial values for by, (560) near 0.1 m™*

resulted in better spectral matching, particularly for the hypertrophic C. hurindinella bloom wa-
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ters. Therefore these waters are presumably affected by high NPP backscattering. The algorithm
was less sensitive to the value of l;b,,pp used in the calculation of b,,,,. A value of 2% was therefore
used. There was little sensitivity to the initial value for ag(44o). A value of 2.5 m™* was used. A
wavelength weighting function f(1) with more sensitivity in the spectral region 500 to 650 nm was
found not to improve type/size detection. This means that the red-NIR and blue spectral regions
are important for resolving type and size in complex waters.

The optimal initial conditions yielding satisfactory estimates for type and size were therefore
determined through the sensitivity analysis (indicated in the last row of table 5.4.1). These were
used to test the sensitivity of an inversion model run with a single set of initial conditions, and to
assess the ambiguity of the solution. Further optimisation of the initial conditions for water types

is performed in section 5.4.3.

5.4.2 ALGORITHM PERFORMANCE IN DIVERSE WATERS: SENSITIVITY AND AMBIGUITY OF THE

INVERSE PROBLEM

The performance of the inversion algorithm across the various trophic ranges and water types in
showninfig. 5.4.1 and table 5.4.2. Asthe variables were non-normally distributed a non-parametric
measure of correlation was used. There are significant correlations for chl-a (r=0.95), a, (r=0.96),
ESD (r=0.68) and D, (r=0.82). The retrieval of chl-a and a,4(440) for LK (r=0.93 and r=0.91,
respectively) over the wide trophic range (chl-a & 0.5 to 500 mg m ™) illustrates the robustness of
the biomass estimates. The determination of agt,(44o) in meso/oligotroiphic waters (r > 0.7) was
significantly better than for hypertrophic waters as expected because of the relative magnitudes of
the signals from non-phytoplankton components. Retrieval in the mixed high mineral composi-
tion waters of TW was the most challenging case, likely owing to greater ambiguity of the inverse
problem. With regard to type, the M. aeruginosa and C. hirundinella blooms can be differentiated,
and mixed water types are determined as such, while, as expected, there is little sensitivity to type

in oligotrophic waters.

MIXED MESOTROPHIC AND OLIGOTROPHIC WATERS

Retrieval of type and size in mixed mesotrophic and oligotrophic (chl-a < 10 mgm™3) waters with
large signals from both dissolved and NPP matter was more challenging than for the hypertrophic
blooms (see below). Size was poorly retrieved with positive r values & 0.3. A few reasonable com-
parisons were determined for the mesotrophic mixed assemblage in TW, which was a combination
oflarge dino and intermediate cyano species, but there was a noticeable insensitivity to the larger as-
semblage size in LK waters which was generally underestimated by the algorithm. For oligotrophic
waters, type was biased towards the cyano-dominant initial condition with typically > 60% cyano

composition. This confirms the relative insensitivity for type detection in oligotrophic waters, since
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Figure 5.4.1: Measured versus modelled variables and retrieval of type and size for all water
types. Estimated variables denoted " are on the y axis. The 1:1 line is indicated by the dashed
lines. Note log-log scales (A-C). Type is indicated in F by number of spectra (N) with a given
cyano composition in %. R, is coloured by wavelength (nm) in G.

these waters were dominated at low biomass by dino/diatom assemblages. For each of the water
types, the retrieval of chl-a and a,(440) was performed satisfactorily with significant positive cor-

relations with r values > 0.6 with some scatter around the 1:1 line. In general chl-a tended to be
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Table 5.4.2: Spearman rank correlation coefficient (r) and number of samples (bracketed) for
measured variables and those estimated using the inversion algorithm. lItalics indicate correla-
tions not significant at the 95% confidence interval. Note ESD and D, for HB were set to a
constant assumed value of 5 ¢ m and therefore do not have a r value.

Water type/Reservoir Chl-a a,(440)  ag,(440) ESD Dy R,(440)
Combined 0.95(56) 0.96(59) 0.24(59) 0.68(ss) 0.82(34) 0.9(63)
Mixed waters 0.88(33) 0.87(34) 0.74(34) 0.28(30) o0.56 (10) 0.81(38)
Mixed meso/eutrophic  0.57 (14) 0.83(12) o0.77(12) 0.32(10) 0.37 (6) 0.82 (16)
Mixed oligotrophic 077 (19) 0.67(22) o0.73(22) 0.31(20) 0.8 (4) 0.70 (22)
Hypertrophic Mc.

& Cer. blooms 0.69 (23) 0.81(25) -0.27(25) o0.84(25) 0.79(24) 0.94(25)
HB 077 (15) o.71(15) -0.38 (15) - - 0.80 (15)
LK 0.93(31) 091(38) 0.55(28) 032(37) -0.15(13) 0.63(38)
™ 0.73 (10)  0.77(6) 0.60 (6) 0.50 (3) 0.6 (6)  -o0.05(10)

overestimated in mesotrophic waters, and a,(440) tended to be underestimated in oligotrophic
waters. This can relate to the determined assemblage composition which affects the magnitude of
by, through by, the latter which is typically larger for cyano dominated assemblages (see fig. 5.3.6).
The improved sensitivity to and retrieval of ag#(44o) is apparent by r values > 0.7 (table 5.4.2). An
explanation for the consistent underestimation of ag, (440) is not clear. It may be related to the ver-
tical structure of the IOPs, methodological errors in the determination of ag,, or other unknown
sources. Nevertheless the significant positive correlation provides encouragement that agt,(44o)
may be determined by inversion in mixed meso/oligotrophic waters. These findings confirm the
hypothesis related to size and type detection, and that related to enhanced sensitivity to dissolved

and tripton components, in mixed low biomass waters.

Selected examples illustrate the fits between the measured and modelled R, (fig. 5.4.2). The
mineral rich waters in TW presented the most challenging case with poor agreement in the blue
(fig. 5.4.2A). This effect, also visible in fig. 5.4.1G-H, could be related to optical variability of
tripton particles or gelbstoff, or due to the assumed spectrally flat by, leading to generally under-
estimated NPP (back)scattering in the blue. This can also be used as an alternative explanation
for the generally underestimated values for agt,(44o) for all waters. However a spectrally sloped
bynyp interfered with type and size detection which was the primary aim of this study. Examples
from mesotrophic and clear oligotrophic waters in LK showed a close match between measured
and modelled R, (fig. 5.4.2B,C). For the clearest waters (chl-a < 0.5 mg m™?) however, the algo-
rithm struggled to reproduce the typical higher reflectance in the blue (fig. 5.4.2D), presumably as

a result of underestimated non-phytoplankton (back)scattering.
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Figure 5.4.2: Examples of algorithm fitting in A) TW mixed, B) Loskop mesotrophic, and
C-D) Loskop oligotrophic waters. Measured versus modelled R, are shown in the first row
and a and b, coefficients are in the second and third rows, respectively. The titles show the
concentration of chl-a (mg m™2), Dy (um), and type as % cyano estimated by the algorithm.

HYPERTROPHIC WATERS: DIFFERENTIATING BETWEEN CYANOBACTERIA AND DINOFLAGELLATES

Examples in fig. 5.4.3 show the measured and modelled R, and the IOPs determined by the algo-
rithm in high biomass mono-specific blooms of M. aeruginosa and C. hirundinella. For most of the
spectra, the algorithm closely matched the spectral features in the soo to 650 nm range, thereby
providing good separation of type between the blooms (see fig. 5.4.3A,B). This is reflected in fig.
5.4.1 which indicates the C. hirundinella bloom mode > 80% dino composition, and the mode
of the M. aeruginosa bloom spectra > 90% cyano composition. Three of the C. hirundinella spec-
tra were incorrectly determined as cyano-dominant resulting in poor spectral matching (example
shown in fig. 5.4.3D). This affected the correlations in fig. 5.4.1H that illustrate the poor spectral
matching in the 550 to 650 nm range for Ceratium dominant waters. Similarly the sensitivity for
type detection for eight of the cyano-dominant spectra was relatively poor with values between
40 and 80% cyano composition. There was good distinction between the large and small celled

populations (fig. 5.4.1D,E). Since size was not measured in the M. aeruginosa bloom, its value was
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estimated as 5 ym and was constant. This affected the r values for the hypertrophic waters which
were 0.84 and 0.79 for ESD and D, respectively. The population D, of the C. hirundinella bloom
was determined as between 20 and 42 um, close to its actual value from 2§ to 35 ym. In general,
the measured values for ESD were slightly higher than those measured for D.g, which is expected
since the Coulter Counter includes small particles. Similarly for the M. aeruginosa bloom, D, was

determined as between 2 and 15 ym, which is close to its actual value.
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Figure 5.4.3: As for fig. 5.4.2 except for A) M. aeruginosa bloom in HB, B) C. hirundinella
bloom in LK, C) M. aeruginosa surface scum in HB, and D) non-fitting example of C.
hirundinella bloom in LK.

The retrieval of chl-a and a, (440) was satisfactory with r > 0.7 considering the range of values
over more than 3 orders of magnitude. The extremely high chl-a values in HB were measured in sur-
face scum conditions. These were surprisingly resolved with closely matching R, spectra (see fig.
5.4.3C), although the values for chl-a and a, (440) have substantially larger uncertainties. For the
C. hirundinella blooms a,(440) was generally underestimated relative to the measured values. The
sensitivity to ag,(440) in hypertrophic waters was poor, in agreement with previous discussion,

with the measured values typically underestimated for HB. Overall the R, spectra were closely
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matched by the inversion scheme (fig. 5.4.1G,H). There was some wavelength dependence of the
fitting, with poorer fits in the chl-a fluorescence band near 680 nm, in the region near 560 nm
(associated with the position of the accessory pigment induced peak) and the peak near 440 nm.
The poor fitting of the soret peak is possibly a result of negligible signal caused by high absorption
by phytoplankton, detritus and dissolved matter. The blue region is therefore typically not easily
resolved in highly scattering and absorbing waters which has important implications for remote
sensing algorithm targeting this region.

In summary, the inversion experiment has tested both the sensitivity to type and size detection
across water types and demonstrated the significant ambiguity of the inverse problem in mixed
turbid waters. The results demonstrate that type and size detection is likely only feasible (using an
unconstrained approach) in high biomass bloom scenarios, while the detection of dissolved and
NPP absorption is likely only feasible in meso/oligotrophic waters. The solution was ambiguous
with respect to phytoplankton type and size in many cases, leading in some cases to poor spectral
fitting of R,;. In contrast, is was found that biomass (chl-a and a¢) could be retrieved with a good

degree of confidence across all of the water types.

5.4.3 AN OPTIMISED INVERSION ALGORITHM FOR TYPE AND SIZE DETECTION

The above analysis has demonstrated the sensitivity and ambiguity of the inverse problem for type
and size detection. The initial conditions were not adjusted according to the water type or known
phytoplankton assemblage types or size. It is however feasible to select initial conditions that are
specific for each spectrum, thereby potentially improving type (and size) detection. This is done
by incorporating an empirical expression for cyano-dominance derived in Chapter 2 into the algo-
rithm structure, providing an automated and improved initial guess for type (T). The cyano-flag is
applicable only in waters where chl-a > approx. 20 mg m™3 where the spectral features associated
with phycocyanin pigment become clearly visible. Therefore, for spectra determined as medium-
high biomass (chl-a > 20 mg m™?) using the empirical chl-a algorithm, the cyano-flag is used to
detect the presence of cyano-dominant waters. If cyanobacteria is detected T is set to 90%, i.e.
cyano-dominant; if not T is set to 10%, i.e. 90% dino-dominant. In all cases the flag correctly
identified high biomass cyano-dominant waters in HB and T'W, while those of LK were correctly
identified as non-cyano dominant. This provides empirical evidence that the flagging procedure
is robust for use with both water leaving reflectance and top-of-atmosphere type reflectance, as
shown in Chapter 2. For medium-low biomass assemblages it is not feasible to determined cyano-
dominance, therefore the assemblage is assumed to be mixed and T is set to 50%. The optimised

algorithm function can therefore be described using the following logical statements:

« Ifchl > 20 mgm™? and cyanoflag = True, T = 90%

« Ifchl > 20 mg m™? and cyanoflag = False, T = 10%
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« Ifchl < 20mgm™3, T = 50%

The results of the algorithm with cyano-flagging are presented in fig. 5.4.4 and table 5.4.3 and can
be compared with those of fig. 5.4.1. The spectral matching is evidently improved especially for the
high biomass C. hirundinella blooms as a result of the more appropriate initial condition for type, as
is visible in fig. 5.4.4H. This is reflected in slightly improved correlation coefficients for R,s(440).
The pre-classification of type therefore reduces the ambiguity in the inverse problem, improving
the algorithms ability to resolve diagnostic spectral features at various wavelengths. The type result
for high biomass blooms are now correctly clustered towards the respective cyano and dino types
(fig. 5.4.4F). For medium-low biomass LK waters, there is a bias towards dino-dominance which
agrees with the assemblage species composition. The oligotrophic waters are clearly less sensitive
to type with the majority near the initial value of 50%. The TW waters are more broadly spread
with regards to type which reflects the mixed dino/cyano assemblage. The estimates of size as
compared to ESD are improved with a higher correlation coefficient for the combined dataset of
0.8, and significant correlations for mixed waters (r=o0.57) and even oligotrophic waters (r=0.65)
(fig 5.4-4D,E, table 5.4.3). This reflects the sensitivity of the algorithm to the initial conditions as
discussed in section 5.4.1. The ability to have various initial conditions through pre-classification of
the spectra with respect to type and biomass therefore results in improved estimates of size. There

are no significant differences in the estimates of chl-g, a, or ag, between the two algorithm versions.

Table 5.4.3: Correlation coefficients between measured and modelled variables using the type
optimised inversion algorithm. See table 5.4.2 for details.

Water type/Reservoir Chl-a a,(440)  ag(440) ESD Dy R,(440)
Combined 0.94 (56) 0.96(s9) 0.35(59) o0.80(s5) 0.74(34) o0.9(63)
Mixed waters 0.85(33) 0.80(34) 0.73(34) o0.57(30) o0.12(10) 0.83(38)
Mixed meso/eutrophic  0.46 (14) 0.78 (12) 0.82 (12) o0.55(10) -0.1(6)  0.85(16)
Mixed oligotrophic 0.74 (19) 076 (22) 0.59(22) 0.65(20) 0.6 (4) 0.72 (22)
Hypertrophic Mc.

& Cer. blooms 0.63(23) 077(25) o0u17(25) o080(25) o076(24) 0.94(25)
HB 0.73 (15) 0.66 (15) 0.13 (15) - - 0.81 (15)
LK 0.93(31) 0.92(38) o0.51(28) 0.53(37) -0.28(13) 0.64(38)
T™W 0.80 (10)  0.94 (6) 0.41 (6) 0.50(3) 0.43 (6) 0.05 (10)
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Figure 5.4.4: Measured versus modelled variables and retrieval of type and size for all water
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cyano composition in %. Ry is coloured by wavelength (nm) in G.
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The retrieval of spectral a, allows for accessory pigment phycocyanin (PC) to be retrieved for
cyano-dominant waters. a,.(620) was calculated as a,(620) — 0.24 X a,(665) after Simis et al.
(2005). PC was then retrieved by (a,.(620)/0.0146)"°7° using the relationship determined in
Chapter 3. The resulting PC concentrations were compared to those measured in situ (fig. 5.4.5).
A statistically significant fit was determined for PC in both TW (r=0.94, n=5) and HB (r=0.59,
n=15). Thus the retrieval of accessory pigments is achievable from the inversion scheme where
the relationship between a and the pigment concentration is known. Importantly PC can only be
accurately retrieved in high biomass cyano-dominant waters, and should not be preformed in lower

biomass and mixed waters.
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Figure 5.4.5: Measured versus modelled accessory pigment phycocyanin (PC) from the inver-
sion algorithm.

5.5 CONCLUSION

The study has tested the feasibility for using a radiative transfer based inversion algorithm for dif-
ferentiating between high biomass blooms of cyanobacteria and eukaryotic algae in hypertrophic
inland waters. The results indicate that despite the considerable ambiguity of the inverse problem,
and the considerable optical complexity of the waters under investigation, it is feasible to differen-
tiate between blooms of small-celled M. aeruginosa cyanos from those of large celled C. hirundinella
using an radiative transfer based inversion algorithm on the basis of unique spectral pigmentation
and diagnostic phytoplankton absorption and (back)scattering. In this regard the phytoplankton
assemblage size, parameterised in terms of D¢, and the species percentage composition can be re-
trieved in hypertrophic waters with r approx. 0.8. In contrast, size and assemblage composition
retrievals in mixed mesotrophic and oligotrophic waters with relatively large optical contributions
from gelbstoff and tripton absorption was generally poor. In these cases, combined gelbstoff and

tripton absorption was retrieved with higher certainty (r > 0.7), although was typically underesti-
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mated. The estimated chl-a, a,(440) and cyanobacterial accessory pigment PC was highly corre-
lated with measured values despite the exceptionally large value range for the waters investigated
in this study. Therefore biomass estimates provided by the inversion algorithm are typically robust
across water types with variable species composition. Optimisation of the initial conditions for
type using a simple empirical flagging procedure improved type detection and optical closure of
measured and modelled R,,.

The study demonstrates one of the first uses of an inversion scheme using a coupled bio-optical
model and RTM (see also (Rehm and Mobley, 2013)). This approach is likely to be used in future
as computational abilities increase further for deriving IOPs directly from the R, in operational sys-
tems. The resolution of phytoplankton type and size from satellite-based multispectral sensors such
as the Sentinel-3 Ocean and Land Colour Instrument (OLCI) and the Hyperspectral Imager for
the Coastal Ocean (HICO) is likely to be achievable using the approach used in this study, which
should be adapted for this purpose in future. However this is dependent on an atmospheric correc-
tion which provides accurate water leaving reflectance data which remains a challenge in optically-
complex and turbid waters. The retrieval of various parameters can also likely be improved through
a pre-classification of water types which select optimal initial conditions for use by the inversion
algorithm. The algorithm structure can be used with alternative phytoplankton types (e.g. diatoms
or chlorophytes) and ranges of constituents to enable more general application in coastal and in-

land waters.
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Eutrophication, cyanobacterial blooms and surface

scum in South African reservoirs: 10 years of

MERIS observations

The MPH chlorophyll-a product for South Africa’s second largest water supply reservoir, the Vaal Dam, on
20th March 2012 just days before MERIS stopped acquiring imagery.
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Abstract

The medium resolution imaging spectrometer full resolution (MERIS FR) archive
(2002 to 2012) over South Africa has been processed with the maximum peak height
(MPH) algorithm for the 50 largest reservoirs in South Africa. The status, seasonality
and trends of chlorophyll a (chl-a), cyanobacteria and surface scum area coverage are
established for each of the reservoirs. The majority (60%) of the 50 reservoirs were hy-
pertrophic (mean chlorophyll a > 30 mg m™3), while 23 reservoirs had intermediate
to extensive cyanobacteria coverage. Surface scum events occurred in at least 33 of the
reservoirs, with intermediate to extensive coverage in seven of the reservoirs. Signifi-
cant trends showed that reservoirs have both worsened and improved with regards to
eutrophication, cyanobacteria and surface scum coverage between 2005 and 2012. A
winter maximum in cyanobacteria coverage was observed against expectations for some
of the reservoirs. An independent validation of the MPH algorithm demonstrates that
gross trophic status can be determined with a high degree of confidence in both eukary-
ote and cyanobacteria waters (r = 0.8). However, chl-a estimation in oligo/mesotrophic
waters remains challenging due to a wide range of potential sources of error. Cyanobac-
teria and surface scum identification is performed with a high degree of confidence as il-
lustrated through selected case studies. The study is the first of its kind providing quanti-
tative biogeochemical and phytoplankton species information in lakes from a time series
of satellite remotely sensed data on a sub-continental scale, demonstrating how global
analyses of biogeochemical properties in lakes might be performed in future. The study
demonstrates the pivotal role that satellite remote sensing can play in supplementing in
situ monitoring efforts, particularly in the developing world, and in contributing towards

a better understanding of lakes in the earth’s biogeochemical cycle.

INTRODUCTION

GLOBALLY, LAKES PLAY AN IMPORTANT ROLE in regulating earth’s climate, acting as sentinels and
regulators of climate change (Williamson et al., 2009), as well as being a crucial life-giving resource
for humanity. Global observations of lakes using satellite remote sensing has rapidly progressed
in the last two decades with global time series observations of surface water level (Crétaux et al.,
2011) and wetland inundation having been obtained (Prigent et al., 2007). However, there exists
a paucity of information regarding biogeochemical water quality information on a global scale for
lakes, which constitutes a significant gap in understanding of the role of lakes in earth’s biogeo-
chemical cycle (nutrients and carbon) and their response to global change. Phytoplankton are an

ideal indicator of responses to changes in biogeochemistry in lakes, with chl-a and cyanobacterial

134



biomass estimates being robust measures of ecological integrity (Carvalho et al,, 2012). Anthro-
pogenic changes in nutrient cycles, hydrology and climate have led to an increased incidence of
cyanobacterial algal blooms globally (Michalak et al., 2013, Paer]l and Huisman, 2009). However
currently there exists no analysis concerning the possible extent and magnitude of these changes

on phytoplankton biomass (chl-a) and cyanobacterial blooms on global or continental scales.

Satellite remote sensing of biogeochemical parameters in water has been extensively applied to
inland waters (for detailed reviews of studies and methods see Matthews, 2011, Odermatt et al.,
2012). Time series observations of parameters related to phytoplankton and water clarity derived
from various satellite instruments exist for several lakes (e.g. Hu et al., 2010b, Olmanson et al,,
2008, Stumpf et al,, 2012). However, these and other existing studies do not provide quantitative
chl-a estimates, nor do they cover a large number of lakes on a sub-continental scale. Therefore
their usefulness in contributing to global biogeochemical models is severely limited. Global, con-
tinuous estimates of biogeochemical parameters in lakes from satellite have been hindered by the
absence of suitable products (i.e. algorithms) and by the lack of continuous satellite missions with
the required spatial, spectral, temporal and radiometric resolutions. Recent South African studies
demonstrate the medium resolution imaging spectrometer (MERIS) as the optimal past sensor for
providing detailed water quality information products owing to its spectral, temporal, radiometric
and spatial resolution (Matthews et al,, 2012, 2010). Briefly, MERIS has a spatial resolution of 260
by 290 m depending on the altitude, an acquisition frequency of 2 to 3 days, and 15 spectral bands
ideally positioned for water related applications. These sensor specifications allow for sufficient ob-
servational frequency and sensitivity to enable viable change detection on an approximately weekly
time-scale, not offered by the many currently available high spatial resolution visible radiometers
(e.g. Landsat or SPOT). Therefore, MERIS provided a unique opportunity for observing lakes on
a global scale and high frequency, unparalleled by current in situ monitoring capabilities which may

also be hindered by high costs or lack of capacity.

The maximum peak height (MPH) algorithm designed for operational use with MERIS is unique
in that it provides quantitative chl-a estimates for cyanobacteria and eukaryote dominant waters,
and robust cyanobacteria and surface scum detection, while also being applicable to various waters
(see Chapter 2). The MPH also avoids error prone atmospheric correction schemes required for
the use of most other products through utilising the signal at the top of atmosphere. The MPH
can currently only be applied with the MERIS sensor or hyperspectral instruments, since other
operational satellite-based instruments lack sufficient spectral resolution (including the moderate
resolution imaging spectrometer or MODIS). However, its applicability to the forthcoming ESA
Sentinel Ocean and Land Colour Instrument (OLCI) instrument should provide good product
continuation for at least a further decade. This study presents results from the MPH algorithm ap-
plied to the full time series of MERIS observations (2002 to 2012) for the 50 largest South African
inland water bodies. The study is unique with respect to both the quantitative time series products

and its application to water bodies on a national/sub-continental scale (South Africa). This study
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is the first of its kind in aiming to provide quantitative biogeochemical products for a large number

of lakes on a sub-continental scale from the MERIS full archive.

A great deal of information has been published on the occurrence and distribution of eutrophi-
cation and cyanobacteria in South African reservoirs (e.g. Harding and Paxton, 2001, Oberholster
and Ashton, 2008, Oberholster et al., 2005, van Ginkel, 2012, 2011, van Ginkel et al., 2000). This
includes recent reviews on eutrophication research (van Ginkel, 2012, 2011). In particular, moni-
toring efforts have been driven by the national eutrophication management plan (NEMP) by the
Department of Water Affairs (DWA) (van Ginkel et al., 2000). The studies indicate that eutroph-
ication and cyanobacterial blooms are widespread and extensive in South African reservoirs, and
poisonings of domestic and wild animals by cyanobacterial toxins are a frequent occurrence (Ober-
holster et al., 2005, 2009). However, these studies are based on in situ point-based samples which
are limited both spatially and temporally. Therefore, despite the great monitoring efforts, there re-
mains much uncertainty regarding the overall status of eutrophication and cyanobacterial blooms
in South African reservoirs both from a temporal and spatial perspective. This is exacerbated by
the very large number of manmade impoundments (497 reservoirs with capacity larger than one
million cubic meters) as a result of the aridity of the region and relative scarcity of water in South

Africa, and almost complete absence of large natural lakes (Oberholster and Ashton, 2008).

Furthermore, for most South African reservoirs the phenology, seasonal variability and trends
of production and phytoplankton species composition remain largely uncharacterised. The degree
to which the occurrence of problem eukaryote species, for example the dinoflagellate Ceratium
hirundinella, is increasing is also largely unknown (Hart and Wragg, 2009, Van Der Walt, 2011,
van Ginkel et al,, 2001). Information on the severity and occurrence of cyanobacterial scums (or
mats) is also absent for South African reservoirs. Surface scums have significant negative ecolog-
ical consequences on the diversity and functioning of the plankton community and higher order
organisms, and associated toxin production is a health threat for potable and recreational water use
(Chorus et al., 2000, Oberholster et al., 2009). Thus the lack of information on their occurrence and
extent in South African reservoirs constitutes a risk to public health. Cyanobacterial surface scums
also serve as an important ecological indicator of over-enrichment and meteorological warming
and senescence (Michalak et al., 2013, Paerl and Huisman, 2009 ). Therefore, surface scum occur-
rence is likely to be a good indicator of regions subject to severe eutrophication or potential climate
warming.

This paper aims to characterise phenological changes in eutrophication, cyanobacteria and sur-
face scum in South African reservoirs using 10 years of data from the MERIS archive. The status,
seasonality, and trends for each of the variables are determined for the reservoirs. In addition, the
study seeks to validate the chl-a estimates from the MPH algorithm using an independently ac-
quired in situ dataset. Case studies are used to demonstrate eukaryotic and cyanobacteria bloom
detection, and surface scum mapping using the MPH algorithm. The provision of a satellite based

dataset supplementing in situ monitoring data seeks to fill an information gap in the limnology
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of South African inland waters, as well as provide input into biogeochemical ecosystem models
and regional climate change studies incorporating lakes, and to models predicting phytoplankton

biomass and surface scum formation from meteorological and hydrological variables (e.g. Soranno,

1997) .

6.2 METHODS

6.2.1 RESERVOIR SELECTION

The 50 largest reservoirs in South Africa by surface area were selected for the analysis (see table
6.3.1 for surface area and coordinates). The surface area of the reservoirs was obtained from high
resolution shapefiles (RQS, 2004). Seasonal pans, estuaries and water bodies subject to tidal in-
fluence were not included. Weekly water level data available for most of the reservoirs between
2002 and 2012 was used to identify low-water periods (DWA, 2013a). Reservoirs with extended
low-water (drought) periods or which were too narrow to be viewed without significant adjacency

effects (< 600 m wide) were excluded.

6.2.2 MPH ALGORITHM

The MPH algorithm was used to compute the concentration of surface chl-a as well as identify
cyanobacteria-dominated water and surface scum conditions in the reservoirs (for detailed descrip-
tion see Chapter 2). The algorithm’s main advantages are its ability to operate over a wide trophic
range from oligotrophic to hypertrophic conditions and, its unique ability to distinguish between
cyanobacteria-dominant and eukaryotic-dominant phytoplankton blooms. Derived using a match-
up dataset of MERIS data and chl-a measured in situ from three South African inland waters and
the Benguela marine system, it has an operating range of at least between 0.5 and 400 mg chl-am™3.
Its limit of detection is less than 3.5 mg chl-a m™3. The algorithm is based on the MERIS red/near
infra-red bands between 664 and 850 nm taking advantage of the sun-induced chl-a fluorescence
produced by algae near 685 nm and the particulate backscatter-induced peak near 710 nm visible
in high biomass blooms (chl-a > approx. 20 mg m™3). Designed for implementation as an oper-
ational algorithm, its usage here is intended to 1) identify the trophic status of the water bodies
through chl-a estimates, 2) identify cyanobacteria blooms and 3) identify cyanobacterial surface
scum conditions (defined here as chl-a > 500 mg m~?). The MPH algorithm has the advantage of
being easily implemented and is suitable for processing very large amounts of data. Chl-a estimates

were limited to 1000 mg m ™3 within an acceptable confidence range of the algorithm.

6.2.3 MERIS FR DATA PROCESSING

Archived MERIS full resolution (FR) level 1P data were obtained over South Africa between the

years 2002 and 2012. The files contain 15 bands with uncorrected top-of-atmosphere (TOA) ra-
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diances. MERIS data were processed using open source processing tools in a Linux environment
using Python programming language (V. 2.7.1). A schematic of the data processing chain is shown
in figure 6.2.1. The accurate MERIS ortho-rectified geo-location operational software (AMOR-
GOS, ACRI-ST) was used to ortho-rectify the data. AMORGOS provides accurate geo-location
for MERIS imagery to within one pixel accuracy (<300 m) which is essential for extracting small
targets such as the reservoirs in this study. The inputs are the MERIS FR files and the auxiliary
orbit files corresponding to the specific scene (downloaded from ESA). AMORGOS uses a digital
elevation model (DEM) to compute the latitude and longitude of a pixels first line of sight and
intersection with the earth’s surface. The outputs are geo-corrected latitude and longitude bands
for the scene written into a new product file. Importantly, the data are not altered by the geo-
correction process. A few scenes produced geo-location errors and therefore had to be removed

manually after visual inspection of the data.

Reservoir
MERIS .

W AMORGOS —7/ FRG / / bounsing /
box

Orbit
files
Reservoir MERIS BEAM
shapefile BRR GPT
Radiometric

correction

Compute
MPH
products

MPH
imagery

Y
Cloud
processor

Numpy
Matplotlib

Extract
reservoir
pixels

MPH
product
file

Figure 6.2.1: Schematic processing chain for MERIS data. Inputs are shaded in blue, outputs
in green and processes in red. See text for details.

The files were processed after ortho-correction using the Basic ENVISAT Toolbox for (A)ATSR
and MERIS (BEAM) V. 4.9.0.1. Within the graph processing framework in BEAM the files were
subsetted according to a bounding box for each of the reservoirs, corrected for radiometric effects
using the Radiometry Processor V. 1.0.1 (Bouvet and Ramoino, 2009), and corrected for gaseous
absorption using the bottom-of-Rayleigh reflectance (BRR) processor V. 2.3 (ACRI, 2006, Santer
etal, 1999) (see Chapter 2 for further details). The output is a subsetted BRR product for each
reservoir in the scene. Clouds were detected using the Cloud Processor V. 1.5.203 (© ESA, FUB,
and Brockmann Consult, 2004). The MERIS BRR subset files were then used to compute the MPH
products using Numpy (V.1.5.1) in Python. The output products for each reservoir were plotted
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using matplotlib tools (V.1.0.1) and saved to a hierarchical data format (HDF) file for further pro-
cessing.

Distinguishing between land and water pixels is challenging in hypertrophic conditions (Matthews
etal, 2010) and in South African reservoirs with water levels that typically fluctuate widely both
seasonally and with droughts. Conventional methods used to distinguish between land and water,
such as empirically-based land-water separation algorithms, often fail due to the high reflectance
values associated with cyanobacterial blooms and surface scums. Incorrect classification of land
pixels as water will lead to erroneous results. In order to overcome these difficulties, water pix-
els were extracted using shapefiles drawn for each of the reservoirs from high resolution (30 m)
archived Landsat data. Low water periods were identified with weekly water level data (DWA,
20132). Shapefiles for the minimum and maximum water extents between 2002 and 2012 were
drawn for each reservoir. In certain cases several shapefiles were needed due to fluctuating water
levels. The shapefiles were then used to extract water pixels for each of the reservoirs from the
MERIS data (see fig. 6.2.2). Where water level data were not available (only 5 natural lakes) the
minimum water extent was determined by examining archived Landsat data between 2002 and
2012. This rigorous procedure ensured that land pixels were not included as water and that water

pixels are not incorrectly classified as land.

6.2.4 TIME SERIES METHODS

Time series products for chl-a were computed for each of the water bodies. The lake-average chl-a
value was determined for each image using the median chl-a value of all water pixels. The median
was chosen as it is less sensitive to outliers than the arithmetic mean. Images in which < 10% of
the lake area was visible due to cloud and/or position of the image swath were removed. The lake
averaged chl-a value for each scene was used in subsequent time series analyses. The seasonal cycle
for each water body was computed on a monthly basis using the mean of all observations acquired
during that month for the entire time series (2002 to 2012). The phase, ¢, and amplitude, A, of
the seasonal cycle was determined for each of the lakes as the month with greatest chl-a value, and
the difference between the months with the smallest and largest chl-a values, respectively. The
seasonal anomalies in chl-a, denoted chl-a’, were computed by subtracting monthly averages from
the observations in that month. The trend of the seasonal anomalies was computed using linear
regression analysis according to y(t) = at + b; the regression coefficient a was determined as the
linear trend with respect to time t. The statistical significance of linear regressions was computed

using the student-t test statistic according to:

rvV/N — 2

1—1r*

where 1, the correlation coefficient, is computed as:
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Figure 6.2.2: Example of extraction of water pixels using shapefiles for Theewaterskloof. A)
Water level for Theewaterskloof between 2002 and 2012 in percent. B) High resolution Land-
sat RGB used to trace the low water shapefile (blue) and showing full water extent shapefile
(black). The arrow in A shows the date at which the image was acquired. C) MERIS chl-a
image showing extracted water pixels (colored). Units is mg m™3.




where Nis the number of observations, x is the variable of interest, tis time, and o is the standard
deviation.

Yearly chl-a averages were computed by calculating the mean of all observations within a given
year. The trend of the yearly averages was computed using linear regression analysis as for the sea-
sonal anomalies. Calculation of trends was limited to between 2005 and 2011 due to some missing
data between 2002 and 2004 and excluding incomplete years, e.g. 2012. The mean value of all chl-a
observations for the entire time series was used to determine the overall trophic state of the reser-
voir. Trophic status was defined using the Organisation for Economic Co-operation and Develop-
ment chl-a thresholds applicable to inland waters: oligotrophic, o to 10 mg m™3; mesotrophic, 10
to 20 mg m™3; eutrophic, 20 to 30 mg m™3; hypertrophic > 30 mg m™3. The water bodies were
grouped according to the overall trophic status for comparison of the seasonal cycle.

The area coverage of cyanobacteria, A, and surface scum, A, in percent were computed as the
number of pixels identified as cyanobacteria or surface scum normalised by the number of water
pixels visible in the image. Surface scum is defined as pixels which are identified as cyanobacte-
ria and have chl-a > soo mg m™3. The overall mean area coverage in percent for cyanobacteria
and surface scum were computed for the entire time series for each reservoir. The seasonality of
cyanobacteria and surface scum area coverage was determined using monthly means, as for chl-
a, and the phase (or timing) determined as the month with the greatest coverage. The trend of
cyanobacteria and surface scum area coverage was determined, when appropriate, using the an-

nual means between 2005 and 2011 as for chl-a.

6.2.5 IN SITU VALIDATION

Validation of the results obtained from the 5o reservoirs can be performed using case studies where
sufficient data are available. A great deal of in situ chl-a data has been collected for South African
reservoirs by the DWA through programs such as the NEMP (DWA, 2013b). The data exists as
discreet-point samples collected most often near the reservoir wall but not from a single precise
location (pers. comm. Michael Silberbauer, 2013). Thus samples are not necessarily representa-
tive of the reservoir surface. These data might be used to independently validate the MPH algo-
rithm and provide error estimates for the satellite chl-a estimates. However, a direct comparison
between such point data and the satellite derived lake median is complicated by the horizontal in-
homogeneity of phytoplankton distribution within the reservoir. Reservoirs with strong trophic
gradients, such as Loskop (Matthews and Bernard, 2013a), will lead to downward bias of in situ
measurements compared to the true lake average. In contrast the integrated remote sensing mea-
surement eliminates bias incurred by spatially limited point-based sampling. Therefore, a compar-
ison of point-based measurements and integrated remotely sensed averages is sub-optimal.
Therefore, a matchup analysis was performed for each reservoir. The mean value for pixels con-
tained in a small area (+- 10 pixels = 1km?) corresponding to the approximate location of the in

situ sample point was extracted from the time series of satellite data. The ‘point-based’ time series
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of satellite estimates was then compared to the time series of in situ data for date matches. The
resulting matchups (same date) were compared using linear regression analysis. Reservoirs with
very few matchups and poor correlations due to a mismatch between the location of the point and
satellite observations were then excluded. Sufficiently good matchups were obtained for the fol-
lowing reservoirs: Albert Falls, Bronkhorstspruit, Hartbeespoort, Klipvoor, Midmar, Inanda and
Vaalkop. The overall algorithm performance was evaluated for the combined matchup dataset, as
well as for waters identified as cyanobacteria or eukaryote dominant. The comparison was limited
to ch-a < 350 mgm™3 because of the very high spatial patchiness associated with surface scums and
extremely high biomass blooms. Five outliers were removed from the matchup dataset to improve
the correlations. The goodness of fit was determined using the root mean square error (RMSE)

which was calculated as:

Z(Chl'asatellite - Chl'aiﬂSifu)z 2
N—2

RMSE = (
The bias (average residual) was calculated as:

z (Chl'asutellite - Chl'ainsitu)
N

Bias =
The mean absolute percentage error (mape) was calculated by:

Z ( (Chl'asatellite - Chl'ainsitu ) /Chl'ainsitu)
N

mape =

where N is the number of observations.

6.2.6 ERROR ESTIMATES AND UNCERTAINTIES

Both in situ and satellite derived chl-a estimates are subject to uncertainties from a variety of sources.
These include systematic and methodological errors, as well as those resulting from horizontal
and vertical inhomogeneity in the water constituents distributions. The discreet-point sample
error (Matthews et al,, 2012) for in situ measurements results in large errors that increase with
trophic state due to inhomogeneity in the horizontal and vertical distribution of phytoplankton.
The discreet-point sampling error is particularly large for reservoirs with strong trophic gradients,
which usually become clearer towards the reservoir wall: samples collected near the reservoir wall
neglect the productivity occurring throughout the reservoir (e.g. methods in van Ginkel et al.,
2000). It is expected that this error alone may result in large discrepancies between satellite and
in situ estimates. The combined error from methodological and discreet-point sampling for spec-
trophotometrically determined chl-a typically range between 20 and 30% in South African inland
waters (Matthews et al., 2012).

In contrast, the advantage of remote sensing is in its ability to provide a horizontally integrated

surface estimate, while the vertical profile is not accounted for. Thus an integrated remote sens-
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ing estimate using the mean or median value for the visible lake surface provides a more holistic
trophic estimate for the reservoir. The uncertainty in chl-a estimated using the MPH algorithm is
60% for eukaryote- and 30% for cyanobacteria-dominant waters with a range of 0.5 to 350 mgm™3
for data used to derive the algorithm (Matthews et al., 2012). In clear waters with chl-a= 1 mgm™3,
this equates to an associated uncertainty of &= 0.6 mg m™3, while in highly turbid, cyanobacteria-
dominant water, the error estimate for chl-a = 300 mg m™3 will be == 9o mg m™3. Thus the un-
certainty from the MPH algorithm is only slightly higher than that for in situ measurements, with
uncertainties for chl-a estimates < approx. § mg m™3 becoming larger.

Satellite estimates are also prone to additional sources of error affecting individual pixels, such
as bottom/shoreline effects (shallow clear water where the bottom is visible), contamination by
atmospheric aerosols (such as smoke) leading to erroneous spectral shapes and resultant prod-
uct estimates, cloud effects resulting from cloud shadows, fog and mist, and geo-location errors
resulting in incorrect classification of land and water pixels. Contamination by these sources of er-
ror has been reduced by extracting water pixels away from the shoreline using shapefiles, by using
cloud and aerosol flagging in data processing (already described), and by rigorous examination of
the products for geo-location errors. Furthermore, MERIS scenes in which more than 30% of the
scene was cloudy and in which < 5% of the lake surface area was visible were not included in the
time-series analysis. Therefore, it is likely that errors resulting from these sources have a small, or
negligible effect on the results.

Therefore the satellite estimates can be expected to contain only slightly more uncertainty than
in situ estimates. The satellite estimates are at least satisfactory for gross trophic status classifica-
tion and cyanobacteria detection (Matthews et al., 2012). Ideally, the satellite estimates should be
validated on a lake-by lake basis taking into account differences in the specific optical properties.
However, such a validation is not feasible when considering the number of reservoirs examined
in this study, or for large scale applications. Therefore, validation is performed only for selected

reservoirs where sufficient data are available (section 6.3.5).

6.3 RESULTS AND DISCUSSION

6.3.1 TIME SERIES OF CHL-ad, CYANOBACTERIA AND SURFACE SCUMS

Fig. 6.3.1 gives examples of the time series products derived from three reservoirs covering the di-
verse range of water conditions encountered in South African reservoirs. Each of these reservoirs
represent different trophic states and algal blooms types. Hartbeespoort dam is representative of a
hypertrophic system dominanted by frequent and persistent Microcystis aeruginosa cyanobacteria
blooms and surface scum conditions. Loskop is a meso/eutrophic reservoir typically dominated
by dinoflagellate Ceratium hirundinella blooms with occasional cyanobacteria blooms which occur
seasonally and periodically (Oberholster et al., 2010). Sterkfontein is a high-altitude oligotrophic

reservoir with seasonally timed increases in chl-a from low-biomass cyanobacterial blooms in the
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summer (van Ginkel et al, 2000). The time series products chl, cyanobacteria and surface scum
coverage, are a result of a large number of MERIS scenes: 775 for Hartbeespoort, 863 for Loskop
and 566 for Sterkfontein. This equates to between approx. 9o to 60 scenes a year, or 4 to 8 scenes
per month with less than 30% cloud cover. This observation frequency is suitable for drawing con-
clusions on a monthly or biweekly time-scale, and is therefore suitable for capturing the seasonal
(monthly) phenology of bloom initiation and shorter bloom events occurring on the scale of weeks
to months.

The results in fig. 6.3.1 demonstrate the interoperability of the MPH algorithm and remote sens-
ing approach to reservoirs with known water types and trophic ranges. Presentation of the entire
time series for each of the 5o reservoirs is not practical. However section 6.4 presents case stud-
ies from representative reservoirs where sufficient data are available to verify bloom events, types
and duration, as well as surface scum occurrence. Further validation is difficult to perform since
no in situ datasets are available with the time range, frequency and areal coverage comparable to
those presented here. It may be feasible however to verify whether the satellite-based estimates
are consistent with the range (rather than mean) of in situ chl-a measurements, and with data on
cyanobacteria occurrence.

Examples showing the monthly seasonal cycle for chl-a, the associated anomalies (chl-a’), yearly
averages, and the trends for the anomalies and yearly averages, are shown in fig. 6.3.2. These quan-
tities are discussed with reference to all 50 reservoirs in the following section. The seasonal cycles
for each of the reservoirs have different shapes, but are consistent in that they have an expected
summer chl-a maximum. The greatest anomalies are typically observed during the peak bloom
period in the summer months. Anomalous bloom events are also apparent (see Hartbeespoort
2003, Loskop 2007/2008 in fig. 6.3.2). The trends of the yearly averages and anomalies are also
generally consistent, with Hartbeespoort having the largest positive trend between 8 and 10 mg
chl-a year™. The magnitude and significance of the trends for all 50 reservoirs is discussed in the

following section.

6.3.2 STATUS, SEASONALITY AND TRENDS OF EUTROPHICATION (CHL-a)

The findings of the analysis from 10 years of observations from the MERIS archive are presented
in summarised form in table 6.3.1. The table contains the names, surface areas and geographical
location of each of the reservoirs. The number of MERIS scenes with less than 30% cloud cover
and in which more than 5% of the lake area is visible is indicated by N. These values are dictated
by the coverage of the MERIS archive, which is severely biased towards the north eastern part of
South Africa, resulting in far fewer observations for lakes in the south and south west. The mean
values for chl-a (chl), cyanobacteria (A,,) and surface scum (A,.) coverage estimated by the MPH
algorithm are indicated along with the amplitude (A) and phase (¢) (timing) indicated by abbrevi-
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Figure 6.3.1: Timeseries for chl and area coverage for cyanobacteria and surface scum for A)
Hartbeespoort, B) Loskop and C) Sterkfontein. Note differences in scales for chl and for years
between the plots.

ated month of the year. The trends for both the yearly averages (a.y) and the anomalies (agy ) for
chl-a are indicated as well as for cyanobacteria (a4, ) and surface scum (ay,, ) area coverage (when

applicable).
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Figure 6.3.2: Upper panels: timeseries of chl-a (black line) overlaid with the seasonal signal
(red dotted line) showing the standard deviation envelope (thin dashed line). Lower panels:
chl-a anomalies (red line) and yearly averages (black dots) with fitted trend lines (solid and
dashed, respectively). Shown for A) Hartbeespoort, B) Loskop and C) Sterkfontein. Note
differences in y scales.
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Table 6.3.1 indicates the great variety in chl concentrations existing in South African reservoirs,
which range between 2.4 mg m ™3 for the clearest oligotrophic waters (Pongolapoort) to hyper-
trophic Darlington (696.8 mg m™—?). A histogram indicating the membership of the reservoirs to
each of the trophic classes is shown in fig. 6.3.3A. A separate class is included for lakes with chl
> 300 mgm °. The results indicate that of the 5o lakes observed, 14% are oligotrophic, 16% are
mesotrophic, 8% are eutrophic, and 60% are hypertrophic of which 30% have chl > 300 mg m~3.
Therefore the majority of South Africa’s largest reservoirs might be classified as hypertrophic ac-
cording to the data.

——_— 0
Oligo Meso Eutro Hyper =300 Jan Feb Mar Apr May Jun jul Aug Sep Oct Nov Dec

Figure 6.3.3: Histograms for (A) trophic status classes and (B) phase of the seasonal cycle
of chl-a for 50 South African reservoirs. Oligo = oligotrophic, Meso = mesotrophic, Eutro =
eutrophic, Hyper = hypertrophic. Lakes with chl greater than 300 mg m~3 are plotted in a
separate category.

The seasonal cycles for each of the reservoirs are plotted together in fig. 6.3.4 grouped by various
chl thresholds to facilitate comparison. The seasonal amplitude represents the range of variability
present in any reservoir throughout the year. Lakes such as Sterkfontein, Pongolapoort, Sibayi and
Midmar have small seasonal signals and little year round variability. The largest seasonal amplitude
is associated with Hartbeespoort, Spioenkop, and Grassridge. These have very strong seasonal sig-
nals and display the greatest variability in productivity throughout the year. The phase of the sea-
sonal cycle is also variable between the lakes (see fig. 6.3.3B). The late summer months January and
February are the most productive: 62% of the lakes have their maximum chl-a production during
summer, 24% are during autumn, 8% are during spring, and only 6% are during winter.

Fig. 6.3.5 shows the relationship between chl and the amplitude of the seasonal cycle. A,y is
significantly correlated with chl (*=0.8). Therefore lakes with the lowest chl values have the least
seasonal variability or amplitude and those with the highest chl values typically having the great-
est amplitudes. Various clustering of the reservoirs is visible in fig. 6.3.5. Towards the origin, a

group is visible with chl < 50 mgm™®and Ay < 100 mg m™ 3. Within this group, Pongolapoort,
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Figure 6.3.4: Seasonal cycle of chl-a for 50 South African reservoirs. The data are grouped
in different panels by thresholds for mean chl-a to aid visibility. Reservoir names are abbrevi-
ated. Val = Vaal, Va2 = Vaalkop, Spl = Spioenkop, Sp2 = Spitskop. Note differing y-axes
scales.

Sterkfontein, Midmar and Lakes Sibayhi and Msingazi are closely clustered together as the most
oligotrophic reservoirs with the least seasonal variation. A second cluster is apparent with chl be-
tween soand 150 mgm ™ and A, between 100 and 300 mg m™3. Loskop, Vaal and Chrissiesmeer
belong to this grouping of eutrophic lakes, which may be subject to greater seasonal variability. A
third cluster is apparent for chl between 150 and 300 mg m™ > and A, between 250 and s00 mg
m 3. Gariep, South Africa’s largest reservoir, and Bloemhof belong to this cluster. Another clus-
ter then exists for extremely hypertrophic lakes with chl > 300 mgm 3 and Ay > 450 mgm 3.
Hartbeespoort, Ntshingwayo, Allemanskraal and Krugersdrift belong to this cluster. This group-
ing represents reservoirs most severely affected by hypereutrophication and subject to extreme sea-
sonal variability. It is not clear whether there is any ecological significance or cause to the apparent
clustering. It does however indicate the presence of distinct states which might be used as an alter-

native classification scheme to the conventional trophic status classes. The four apparent classes,
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drawn in fig. 6.3.5 might be used to determine the level of impact by eutrophication. These are class
1, mildly impacted; class two, moderately impacted; class three, highly impacted; and class four,
severely impacted. The classification might be used to establish reservoirs requiring high priority

and urgent attention for eutrophication management.
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Figure 6.3.5: The mean versus the amplitude of chl-a for 50 South African reservoirs. Data
are plotted using abbreviations of reservoir names. The insert shows a zoomed area towards
the origin. Shading indicates various classes (see text for details). Reservoir names are abbre-
viated as in fig. 6.3.4.

The time-series trends for chl-a yearly averages and anomalies are plotted in fig. 6.3.6. The high
correlation between the trend of the yearly averages and anomalies indicates the robustness of the
trend calculations, since the high frequency anomaly signal is consistent with that of the the low-
est frequency of observation (yearly). It is apparent that there are a greater number of negative
anomaly trends than positive ones, 30 versus 20, of which 20 and 9 are significant, respectively.
For instances in which the annual trend is significant there are § positive trends and 13 negative
trends. Only significant trends may be used to draw conclusions regarding whether eutrophication
is deteriorating or improving in a reservoir over the time period. The sum of significant anomaly
trends is -220.5 mg m ™3 year ' while that for significant yearly trends is -187.7 mg m™3 year .

Therefore, based on the number of negative trends it would seem that within the so reservoirs eu-
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trophication became less severe between the years 2005 and 2011. The trend estimates are limited

with respect to the shortness of the time interval (seven years), the occurrence of anomalous bloom

events/periods (resulting from e.g. water level fluctuations), and must be considered relative to the

mean and seasonal variability (amplitude) of chl-a in the reservoir.
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Figure 6.3.6: Trend coefficients of chl-a between 2005 and 2011 for yearly averages and
anomalies for 50 South African reservoirs. Significant positive anomalies trends are indicated
in red while significant negative anomalies trends are in blue. Italics indicates significant yearly
trends. The font size indicates the value of the correlation coefficient, r. The inserts A, B and
C are zoomed near the origin to ensure all data is visible (note scales). Reservoir names are
abbreviated as in fig. 6.3.4.

An investigation of chl versus the trend might be used to identify which reservoirs are most af-

fected by eutrophication (fig. 6.3.7). The plot indicates that within the different classes identified

above, there exist reservoirs which are both improving and deteriorating in trophic status. Reser-

voirs in the severely impacted class require the most urgent attention: however Darlington and

Allemanskrall appear to be worsening while Umtata and Erfenis appear to be improving despite

the overall hypereutrophic conditions. The same conclusions can be drawn for reservoirs in the

other classes from fig. 6.3.7. Vanderkloof, Rustfontein, Xonxa and Lubisi are also identified as re-

quiring urgent attention in the moderately impacted class. The same data are redrawn in fig. 6.3.8
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but the trend is normalised by the amplitude of the seasonal cycle. This indicates the percentage
relative to the expected variability at which eutrophication is worsening or improving. The figure
identifies that Heyshope although only mildly impacted by eutrophication, has the largest trend
relative to the expected variability (>20 % per annum) , and therefore requires urgent manage-
ment attention. The large trends for Darlington and Allemanskrall can be shown to be smaller
relative to the expected seasonal variability (>10% per annum). Reservoirs which improved the
most between 2005 and 2011 relative to the seasonal variability are Kuhlange (Kosi Lake), Zaai-
hoek, Voelvlei, Theewaterskloof and Barberspan (> 20% per annum). The results for chl and the
significant anomalies trends are plotted on a geographical map of South Africa in fig. 6.3.9. The
status and trends of eutrophication with respect to water catchments are discussed in section 6.4.4

below.
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Figure 6.3.7: chl versus the anomalies trend of chl-a for 50 South African reservoirs. Signif-
icant positive trends are red while significant negative trends are blue. Italics indicates sig-
nificant yearly trends. The font size indicates the value of the correlation coefficient, r. The
eutrophication classes are also designated. The insert shows a zoomed region towards the ori-
gin (note scale). Reservoir names are abbreviated as in fig. 6.3.4.
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Figure 6.3.8: chl versus the anomalies trend normalised by the amplitude of chl-a for 50
South African reservoirs. Significant positive trends are red while significant negative trends
are blue. ltalics indicates significant yearly trends. The font size indicates the value of the
correlation coefficient, r. Reservoir names are abbreviated as in fig. 6.3.4.
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Figure 6.3.9: Status and trends of eutrophication (chl-a) in 50 South African reservoirs. A)
The mean chl-a concentration. B) The trend coefficient of the anomalies (significant at the
95% confidence interval of student-t test).

6.3.3 STATUS, SEASONALITY AND TRENDS OF CYANOBACTERIAL BLOOMS

Fig. 6.3.10 shows histograms for the mean and phase of cyanobacterial blooms for the 5o reser-

voirs. Twenty seven (54%) of the reservoirs have <10% cyanobacteria coverage over the time se-
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ries (of which 6 have less than 1%). These reservoirs can be said to have infrequent to occasional
cyanobacterial blooms with insignificant or little area coverage. Examples of these reservoirs are
Loskop and Sterkfontein (see fig. 6.3.1 for timeseries examples). Fourteen reservoirs have between
10 and 30% average cyanobacteria coverage. These reservoirs have common and regular cyanobac-
terial blooms with medium coverage and include South Africa’s two largest reservoirs, Gariep and
Vaal. Nine reservoirs have greater than 30% cyanobacteria area coverage. These reservoirs which
include Hartbeespoort, Koppies, Barberspan and Darlington have frequent, persistent and exten-
sive cyanobacterial blooms (see fig. 6.3.1 for Hartbeespoort example). The classes defined in terms

of cyanobacteria coverage are drawn in fig. 6.3.10.
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Figure 6.3.10: Histograms for (A) cyanobacteria area coverage and (B) phase of the sea-
sonal cycle of cyanobacteria for 50 South African reservoirs.

The seasonal cycle of cyanobacterial blooms is shown in fig. 6.3.10B and fig 6.3.11. The major-
ity of cyanobacterial blooms reach their maximum during summer and autumn months, with the
peak occurrence being early summer (December) and mid autumn (April). Summer and autumn
accounts for 34% (17) each of peak cyanobacterial occurrence, winter 26% (13) and spring only
10% (5) of reservoirs. The seasonal cycles for reservoirs with > 5% A_Cy are shownin fig, 6.3.11. The
shapes of the cycles vary between reservoirs from distinct sinusoidal curves (e.g. Hartbeespoort
and Chrissiesmeer) to bimodal curves (e.g. Barberspan and Theewaterskloof) which have two
maximums at different times of the year. The occurrence of winter maximums is a surprising re-
sult, which has been observed previously by Oberholster and Botha (2007) for Midmar. The results
obtained here confirm the winter maximum for Midmar which has a phase of July, although the
overall coverage is low (0.6%) (table 6.3.1). This result is examined in detail in section 6.4.2. Dis-
tinct winter maximums are observed for Khulange (Kosi Lake), Chrissiesmeer and Flag Boshielo
(fig. 6.3.11). What might be driving winter cyanobacterial blooms is uncertain however the results
here suggest that it is a fairly common occurrence in South African reservoirs with 26% of the so

reservoirs examined having winter maxima.
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Figure 6.3.11: Seasonal cycle of cyanobacteria area coverage for South African reservoirs
with A;, > 5%. The data are grouped in different panels by season of the phase. Reservoir
names are abbreviated as in fig. 6.3.4. Note differing y-axes scales.

Examining the trend of cyanobacteria occurrence between 2007 and 2011 reveals that cyanobac-
terial blooms are becoming more frequent in 10 reservoirs while also becoming less frequent in 9
others (fig. 6.3.12). The sum of significant negative trends is -31.8% y~* whilst that for positive
trendsis 10.7%y . The trends for most of the reservoirs (62%) are insignificant, indicating no sig-
nificant changes over the time period for cyanobacterial bloom occurrence. The trend normalised
by Aicy is plotted in fig. 6.3.13. The result indicates the trend relative to the mean cyanobacteria oc-
currence in a reservoir. The plot shows more clearly that eight reservoirs in the infrequent to occa-
sional bloom category have relatively large significant positive trends, versus four negative trends.
Therefore, reservoirs in this category are worsening with regard to more frequent cyanobacterial
blooms over the time period. The large negative trends for reservoirs in the frequent category (e.g.

Darlington, Kalkfontein) are shown to be smaller relative to A_Cy . The trends and mean A, are
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Figure 6.3.12: Mean versus the trend of cyanobacteria area coverage for 50 South African
reservoirs. Significant positive trends are red while significant negative trends are blue (ital-
ics). The font size indicates the value of the correlation coefficient, r. Reservoir names are
abbreviated as in fig. 6.3.4.

plotted geographically in fig. 6.3.14 and are analysed with respect to catchments in section 6.4.4.

6.3.4 STATUS, SEASONALITY AND TRENDS OF SURFACE SCUMS

Cyanobacterial surface scum conditions exist in at least 33 of the 50 (or 66%) reservoirs exam-
ined (fig. 6.3.15A). The majority have less than 1% mean area cover by scum (34%), 18% have
between one and five percent cover, while just 8% and 6% have between five and 10% and >10%
area coverage, respectively. Seventeen (34%) of the reservoirs have no occurrence of surface scums.
Reservoirs with <1% A, have infrequent and insignificant surface scum coverage. These include
Vanderkloof and Loskop (see fig. 6.3.1). Reservoirs with A, between 1 and 5% have occasional
scum events with relatively little area coverage and includes Vaal and Roodepoort. Reservoirs with
A, between 10 and 30% can be said to have regular scum events with intermediate area coverage,
and include Bloemhof and Krugersdrif. Reservoirs with frequent and extensive scum coverage are

Hartbeespoort (see fig. 6.3.1), Spioenkop and Darlington with A, > 30%. These classes are illus-
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Figure 6.3.13: Mean area coverage of cyanobacteria versus the trend normalised by the
mean for 50 South African reservoirs. Significant positive trends are red while significant neg-
ative trends are blue (italics). The font size indicates the value of the correlation coefficient,
r. Reservoir names are abbreviated as in fig. 6.3.4.
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Figure 6.3.14: Status and trends of cyanobacterial blooms in 50 South African reservoirs.
A) The mean cyanobacteria area coverage (%). B) trend coefficients of cyanobacterial area
coverage (significant at the 95% confidence interval of student-t test).

trated in fig 6.3.16.

The seasonal timing of surface scum occurrence is strongly biased towards summer and autumn
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Figure 6.3.15: Histograms for (A) A, and (B) ¢, for 50 South African reservoirs.

months with the maximum occurring during late summer (February) (fig. 6.3.15B). There are no
cases with winter or spring scum maxima. The mean versus the trend of surface scum are shown in
fig. 6.3.16. Five reservoirs, namely Loskop, Ncora, Erfenis, Vaal and Roodepoort, have significant
positive trends (sum of 2.1% y "), while three Vanderkloof, Gariep and Grassridge have significant
negative trends (sum of -1.6% y ) over the time period. Positive trends amount to 17 reservoirs,
while only 11 have negative trends. Therefore overall it appears that surface scum events became
slightly more frequent over the time period in the 5o reservoirs. However, little can be said of the
change in surface scum occurrence in reservoirs where the trend is not significant. The trends and
mean A, are plotted geographically in fig. 6.3.14 and are analysed with respect to catchments in
section 6.4.4. A detailed investigation of the identification and classification of scums is presented

in section 6.4.3.

6.3.5 COMPARISON WITH IN SITU MEASUREMENTS

The results for the matchup data are presented in table 6.3.2 and plotted in figs. 6.3.18 and 6.3.19. A
comparison of the mean, median and standard deviation of in situ versus satellite estimates reveals
that the MPH algorithm provides a good measure of gross trophic status. For hypertrophic Hart-
beespoort, the mean in situ estimate is §3. 7 mg m™3 versus 60.1 mg m ™ from satellite estimates.
For oligotrophic Midmar, the in situ estimate is 5.9 mg m™3 versus 7.2 mg m™ > estimated from
satellite. Similar results are obtained for the other reservoirs. For all cyanobacteria-dominant wa-
ters the comparison is very close at 93.4 mg m™ 3 versus 110.8 mg m 3, respectively. Similarly, for
eukaryote-dominant waters the comparison is 33.5 mg m™ 3 versus §2.2 mg m3, respectively (see

also the close median and std. dev. comparisons). The close comparisons serve to independently
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Figure 6.3.16: Surface scum area coverage mean versus the trend for 50 South African reser-
voirs. Significant positive trends are red while significant negative trends are blue (italics).
The font size indicates the value of the correlation coefficient, r. Reservoir names are abbrevi-
ated as in fig. 6.3.4.
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Figure 6.3.17: Status and trends of surface scum area coverage in 50 South African reser-
voirs. A) The mean surface scum area coverage. B) The trend coefficient of surface scum
area coverage (significant at the 95% confidence interval of student-t test).
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Figure 6.3.18: Scatter plots of in situ versus satellite estimated chl-a for six reservoirs. Solid
line shows linear regression fits, while dotted line is 1:1 fit. In situ chl-a greater than 350 mg
m~3 were not included due to large horizontal gradients in extremely high biomass conditions.

Table 6.3.2: Linear regression statistics for matchup in situ and satellite chl-a estimates.
The mean, median and std. dev of satellite estimates are presented in brackets. Slope=m,
intercept=c, p-value=p. Units for RMSE and bias are mg m—3, MAPE is %.

Reservoir Mean Median St. Dev. r m c n P RMSE Bias MAPE
AlbertFalls 12.2 (6.0) 11.8 (2.7) 7.4 (5.9) 0.12 0.10  4.85 18 0.64 11.51 -6.19 79.19
Bronkhorstspruit 59.9 (83.3) 54.4 (61.2) 40.4 (75.0) 0.73 1.36 2.08 41 0.00 59.56 23.37 73.20
Hartbeespoort 53.7 (60.1) 20.5 (26.7) 68.3 (79.7) 0.90 1.04  4.00 26 0.00 37.70 6.36 101.70
Inanda 8.0 (12.1) 7.1 (7.4) 5.7 (10.2) 0.28  0.49 8.23 20 0.24 11.63 4.20 141.48
Klipvoor 65.6 (126.1)  47.1 (104.9) 52.2 (81.6) 0.65 1.02  §9.07 30 0.00 89.48 60.51  160.15
Midmar 5.9 (7.2) 4.5 (6.7) 3.7 (6.4) 0.53 0.92 1.69 24 0.01 5.84 1.21 88.01
Vaalkop 17.7 (37.0) 14.6 (31.6) 15.4 (32.4) 0.69 1.45 11.33 7 0.09 36.88 19.31  236.86
All 39.0 (57.5) 17.5 (23.7) 47.8 (74.7) 0.80 1.26 8.49 166 0.00  49.93 18.53  111.29
Cyanobacteria 93.4 (110.8) 72.0 (55.6) 83.9 (104.2) 0.89  1.11 7.10 15 0.00 54.37 17.38  101.68
Eukaryotes 33.5 (52.2) 16.0 (18.0) 38.6 (68.9) 0.78  1.39 5.64 151  0.00  49.86 18.64  112.25

validate the performance of the MPH for gross trophic status determination.

This result is also reflected in the regression analysis: the overall correlation for the combined
dataset has a r value of 0.8 (p = 0.00, RMSE = 49.3). However, the slope of 1.26, intercept of 8.49
and bias = 18.53 mg m™3 indicate that the MPH algorithm has a tendency to overestimate chl-a
relative to in situ measurements. However the scatter in ﬁg. 6.3.19 shows that satellite estimates
also have a strong tendency to underestimate at chl-a < 20 mgm™3. Interestinly, the data < 20 mg
m™ 3 have almost no correlation, being roughly flat. This could be related to the sensitivity of the
MPH algorithm at low chl-a values, which is limited to & 3.5 mg chl-a m ™3 in eukaryote dominant
waters (Matthews et al,, 2012). Alternatively it could be a result of the limit of detection for in situ

measurements which is typically between 1 and 2.5 mg m 3 (0.6 mg m? for Inanda, Albert Falls
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Figure 6.3.19: Log-log in situ versus satellite estimated chl-a. Starred data points are
cyanobacteria dominant. Solid line shows linear fit for all data. In situ chl-a greater than 350
mg m~—3 were not included due to large horizontal gradients in extremely high biomass condi-
tions.

and Midmar).

For waters dominated by cyanobacteria, the fit is improved to r = 0.89 (N=15, RMSE=54.4 mg
m~?). This correlation (r=0.76, N=17, RMSE=46.6 mg m?) is better than the original data from
which the algorithm was derived in Chapter 2. This provides independent verification that the
MPH algorithm operates robustly for chl-a estimation in cyanobacteria dominant waters (most of
these data are from Hartbeespoort). Therefore, chl-a detection for eutrophic cyanobacteria blooms
is achieved with high degree of confidence, although with a positive bias (slope coefficient of 1.11
and bias = 17.4 mgm™3).

For eukaryote-dominant waters, the fitisr = 0.78 (p=0.00, N=151, RMSE=49.9 mg m ). This
is also comparable to the original derivation of the MPH algorithm in Chapter 2 which had ar value
of 0.84. However, the algorithms tendency to overestimate for eukaryotes is slightly higher with m
= 1.39, and bias of 18.7 mgm 3. Detection of chl-a for low biomass waters (< 20 mgm™3) remains
the most challenging case, and cannot in absolute terms be achieved with high confidence. Possible

sources of error include the limit of detection of spectrophotometric methods used to determine
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chl-a in situ, algorithm sensitivity, and possible variable fluorescence quantum yeild at 681 nm on
which the algorithm is based caused by variability in species, seasonality or physiological factors.
The strength of the correlation coefficient is highly variable among the reservoirs. The best fits
are determined for hypertrophic/eutrophic reservoirs Hartbeespoort (r=0.9), Bronkhorstspruit
(r=0.73), Vaalkop (r=0.69) and Klipvoor (r=0.65). m > 1 (positive bias) exists for these reservoirs
(1.02 to 1.45) showing a tendency to overestimate chl-a. A mismatch between the satellite and in
situ sample locations (which are not precisely know) might explain some of the poorer correlations.
For oligo/mesotrophic waters (e.g. Albert Falls, Inanda and Midmar) the r value is much poorer
(0.12t00.53). Thisis in agreement with the lack of correlation for chl-a < 20 mgm 3 in fig. 6.3.19,
for which possible explanations have already been given. For these reservoirs, m < 1, ranging from
0.1 to 0.92, indicating a tendency of the MPH to underestimate chl-a (see Albert Falls negative
bias). Despite the poor correlations it is apparent that the MPH does provide close comparisons
for the mean and median chl-a values in these reservoirs. However, the sensitivity for detecting
small changes in chl-a is complicated by a range of possible sources of error, making comparison of

in situ and satellite results in this range more complex.

6.4 APPLICATIONS

This section contains three case studies to verify the identification of eukaryotic, cyanobacterial
and surface scum by the MPH algorithm: firstly the detection of eukaryote algae is validated through
a case study of C. hirundinella blooms in Albert Falls; second, cyanobacteria detection is demon-
strated through observations of winter cyanobacteria blooms in Midmar; and lastly, surface scum

detection is verified with high resolution satellite imagery from Hartbeespoort dam.

6.4.1 CASE STUDY: OBSERVATIONS OF C. HIRUNDINELLA BLOOMS IN ALBERT FALLS

Hart and Wragg (2009) first reported on the occurrence of C. hirundinella blooms at Albert Falls in
2006. The study included a detailed survey of the lake in October 2006 and January 2007 for which
maps of the spatial distribution of chl-a were produced (see fig. 3 in Hart and Wragg (2009)).
The study also presented time series of mid-lake chl-a data and observed and predicted Ceratium
abundance. These data serve as an ideal reference to verify the performance of satellite estimates
to estimate the spatial distribution and phenology of Ceratium blooms.

Fig. 6.4.1 shows a comparison of satellite and in situ chl-a estimates as well as imagery coincident
with the surveys performed by Hart and Wragg (2009). The time series graph shows a general
correlation between the satellite and in situ observations. In particular, the Ceratium bloom events
that occurred in spring/summer 2004 and winter 2006 as shown in Hart and Wragg (2009) are
well represented. Note that cyanobacteria area coverage timed with these blooms is close to zero,
indicating that the blooms are eukaryote dominant. This is also shown in the satellite imagery,

where no pixels have been identified as cyanobacteria. Satellite lake averages from 2009 onwards
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show a consistent summer time eukaryote bloom of biomass around 20 to 50 mg m™3 presumably
of Ceratium. The seasonal signal of chl-a reaches a maximum in January and a minimum in August
(fig.6.3.4). The in situ data post July 2009 demonstrated no correlation, most likely due to a change
in sample point location, and is therefore not shown. The satellite data could be used to further
verify the rule-based model of Hart and Wragg (2009) for predicting Ceratium in Albert Falls.
The satellite imagery shows nearly identical patterns to fig. 3 in Hart and Wragg (2009) as regards
the spatial distribution of the bloom, which increased exponentially towards the inflow in the south
west corner. Image B1 was acquired on the same date as the survey while the other imagery is
within one day of survey work. The clearer conditions that existed in January 2007 towards the
main basin of the reservoir are vividly reproduced in the satellite observations. The actual values of
the satellite observations are very close to those measured in situ with a maximum value towards the
inflow > 200 mg m™3 and satellite lake averages between 7.4 and 19.§ mg m™3 compared to in situ
lake averages for October and January of 11.7 and 16.4 mg m™3, respectively. This demonstrated

how MERIS can be used to detect eukaryote blooms in spatially-constrained reservoirs.
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Figure 6.4.1: Albert Falls case study showing time series of in situ versus satellite chl-a and
scenes acquired near or simultaneous to measurements made by Hart and Wragg (2009). Al-
A2 are near first survey in October 2006 while B1-B2 are near the second survey in January
2007. 165




6.4.2 CASE STUDY: VERIFICATION OF WINTER CYANOBACTERIA BLOOMS IN MIDMAR

Winter cyanobacteria blooms that occurred in Midmar in 2005 were first reported by Oberhol-
ster and Botha (2007). Winter maxima of cyanobacteria are not expected since cyanobacteria are
known to generally favour higher water temperatures (> 20°C). However, fig. 6.3.11 shows that
several South African reservoirs have winter cyanobacteria maxima including Chrissiesmeer, Kuh-
lange, Msingazi and Flag Boshielo. Interestingly, all but the latter of these waters are natural lakes.
The explanation for winter cyano-blooms given by Oberholster and Botha (2007) related primarily
to increased nutrient availability (nitrogen) tentatively attributed to large populations of waterfowl.
Itis possible that the same explanation might be given for the observation of winter cyanobacterial
blooms in perennial lakes in the semi-arid eastern summer rainfall region of South Africa, which
serve as a refuge for waterfowl during the dry winter months (e.g. Herremans, 1999, Petrie and
Rogers, 1997).

Fig. 6.4.2 shows the time series of chl-a and cyanobacteria coverage and two satellite images
from Midmar in July 2005. A general pattern of correlation is observed between the in situ and
satellite chl-a estimates. More noticeably, a distinct increase in cyanobacteria coverage is detected
during the winter of 2005, corresponding to the findings of Oberholster and Botha (2007). MERIS
imagery from two dates during this period show cyanobacteria detected towards the shoreline (in-
dicated by arrows) near the sample points in Oberholster and Botha (2007) (also indicated). The
flag for cyanobacteria is raised for certain pixels (shown as green pixels - minimum cyanobacteria
detection is 22 mgm3). The location of the cyanobacteria detection corresponds closely with the
observations by Oberholster and Botha (2007). The record of cyanobacteria detection from 2003
to 2012 shows that the event is not an annual phenomenon, but appears more like an anomaly.
The only other distinct winter cyanobacteria blooms in Midmar occurred during 2003, with much
smaller events occurring during 2006, 2009 and 2010. Therefore, it appears that winter cyanobac-
teria blooms occurred infrequently and irregularly in Midmar between 2003 and 2012.

Therefore, cyanobacteria blooms are not a frequent nor persistent feature in Midmar, but rather
occur on an event-scale. Furthermore, it appears that cyanobacteria are typically a minor compo-
nent of the annual summer chl-a maximum in Midmar. The case study demonstrates the sensitivity
and robustness of the MPH cyanobacteria flag to relatively low biomass cyanobacteria blooms, and

how time series observations might be used for the detection of episodic cyanobacteria blooms.

6.4.3 CASE STUDY: OBSERVATION OF SURFACE SCUMS IN HARTBEESPOORT DAM

Hartbeespoort serves as a ideal case study for surface scum detection since it is one of the most pro-
ductive reservoirs in the world with exceptionally high biomass M. aeruginosa blooms (Matthews
and Bernard, 2013a). High resolution Landsat imagery (30 m) acquired co-incident with MERIS
is used here to verify the detection and classification of surface scum by the MPH algorithm. Fig.

6.4.3 shows two such examples, along with the time series for in situ and satellite chl-a. Surface
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Figure 6.4.2: Midmar case study showing two scenes acquired near or simultaneous to mea-
surements made by Oberholster and Botha (2007) illustrating winter cyanobacteria detection.
The time series of in situ and satellite chl-a and cyanobacteria area coverage are also shown.
The sample points in Oberholster and Botha (2007) are indicated at 1 and 2. The arrows
indicate pixels identified as cyanobacteria, and bloom described by Oberholster and Botha

(2007).

scums appear as bright green slicks on the water surface in the TM imagery, and as dark green pix-
els in the MERIS scenes (classified as chl-a > 500 mg m ™3 and cyanobacteria flag raised). In the
two examples, the Landsat and MERIS scenes were acquired less than 10 minutes apart. They show
corresponding patterns in the spatial distribution of the surface scum. In these examples most of

the reservoir surface is covered with scum, although small regions without scum visible in the TM
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scenes are correctly not classified as scum in the MERIS images. Thus the high resolution imagery
verifies the identification of surface scums by the MPH algorithm and MERIS.

The chl-a time series shows a highly significant correlation over the time period, which is also
reflected by the high correlation coefficient (r = 0.9, RMSE = 37.7 mg m™?) for matchups. This is
expected since the MPH algorithm is derived using data from Hartbeespoort and one other Micro-
cystis dominant system. These results demonstrate the ability of the MPH algorithm for providing

chl-a estimates and surface scum detection in hyper/eutrophic Microcystis dominant waters.
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Figure 6.4.3: Hartbeespoort case study showing time series of in situ versus satellite chl-a
and simultaneously acquired MERIS and Landsat imagery illustrating the detection of surface
scum.
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6.4.4 RESERVOIR CLASSIFICATION AND CATCHMENT SCALE ANALYSIS

The status with respect to eutrophication, cyanobacterial dominance and surface scum occurrence
might be used to classify the condition of the reservoirs. The mean values determined for each of
these variables are each plotted on each of the axes in fig. 6.4.4. The three dimensional plot shows
the position of the reservoirs with respect to each other relative to the three variables. Using the
classification ranges defined in preceding sections, an overall classification for each reservoir is pre-
sented in table 6.4.1. The range for each of the classes for chl-a are: < 5o mgm™3, Mild; 5o to 150
mg m %, Moderate (Mod), 150 to 300 mg m~?, High; and > 300 mg m ™3, Severe (Sev). For Ay
the classes are: < 1%, insignificant; 1 to 10%, little; 10 to 30%, medium; and > 30%, extensive. The
classes for A, are: < 1%, insignificant; 1 to 5%, little; 5 to 10%, medium; and > 10%, extensive.
Each of the classes are assigned a score from 1 (least impacted class) to 4 (most impacted class) or
zero for none. The sum of the three scores gives the overall score for each reservoir (score column
in table 6.4.1). In terms of the classification scheme the most severely impacted reservoirs are Dar-
lington, Spitskop and Hartbeespoort, and the least impacted are Woodstock, Albert Falls, Tzaneen,
Midmar and Zaaihoek. Note that the classification scheme is a combination of the three variables,
so a low score does not necessarily mean the reservoir is the least eutrophic. The scoring might
be used as as a scale for measuring priority for management of eutrophication and cyanobacterial

blooms in the 5o largest South African reservoirs.
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Figure 6.4.4: Three dimensional plot showing chl, Ay, and Ay for 50 South African reser-
voirs. The inserts on the right hand side are zoomed in towards the origin for visibility. The
color scale shows the values for chl. Reservoir names are abbreviated as in fig. 6.3.4.
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Table 6.4.1: Overall classification of 50 South African reservoirs for 2003 to 2012 according
to classes (see text).

Name Chl-a Ay A Score  Name chl-a Ay A Score
Gariep High little little 7 Voelvlei Mod medium insignificant 6
Vaal Mod medium little 7 Midmar Mild  insignificant None 2
Bloemhof High medium medium 9 Xonxa Mod little insignificant s
Pongolapoort Mild little insignificant 4 Spioenkop Mod  insignificant None 3
Vanderkloof Mod little insignificant 5 Ncora Sev little little 8
Sterkfontein Mild little None 3 Barberspan Mod extensive insignificant 7
Lake Sibhayi Mild little insignificant 4 Klipvoor High medium little 8
Darlington Sev extensive extensive 12 Grassridge Sev medium little 9
Theewaterskloof ~ Mild medium None 4 Koppies High extensive insignificant 8
Heyshope Mild little None 3 Zaaihoek Mild  insignificant None 2
Kalkfontein Mod extensive medium 9 Lubisi Mod little insignificant 5
Grootdraai Mod medium insignificant 6 Chrissiesmeer Mod extensive insignificant 7
Spitskop Sev extensive extensive 12 FlagBoshielo Mild extensive None 5
Erfenis Sev medium little 9 Goedertrou Mild little None 3
Kuhlange Mild extensive None s Rustfontein Mod medium little 7
Allemanskraal Sev medium medium 10 Fairview Mild little insignificant 4
Woodstock Mild  insignificant None 2 Vaalkop Mod medium insignificant 6
Loskop Mild little insignificant 4 Kwena Mild little insignificant 4
AlbertFalls Mild  insignificant None 2 Roodekoppies High medium little 8
Brandvlei Mild little None 3 Witbank Mod little insignificant 5
Ntshingwayo Sev medium little 9 Lake Msingazi Mild little None 3
Tzaneen Mild insignificant None 2 Bronkhorstspruit ~ Mod little None 4
Hartbeespoort Sev extensive extensive 12 Jericho Mild little None 3
Krugersdrift Sev medium medium 10 Mokolo Mild little None 3
Umtata Sev little little 8 Inanda Mild little insignificant 4

Reservoirs act as integrators and sentinels of change taking place in the broader catchment area
in which they lie (Schindler, 2009). They are also sensitive to changes in climate related variables
such as rainfall, and meteorology, which are captured through their physical, chemical and bio-
logical responses (Williamson et al., 2009). Therefore, through investigating the overall condition
of the reservoirs located within specific catchments, clues may be provided to the overall condi-
tion of the catchment, specifically with respect to anthropogenic forcing of nutrient enrichment. A
preliminary analysis of these effects is performed through integrating the statistics for the primary
drainage basins (or catchment areas) within which the reservoirs lie. Table 6.4.2 shows the mean
results for South African primary drainage basins, which are also displayed geographically for chl-a
infig. 6.4.5.

Importantly, the reservoirs are not evenly distributed among the drainage basins (see N in table
6.4.2) with some catchments having only one reservoir, or none. Other catchments such as Vaal
and Phongolo have many reservoirs (13 and 8, respectively) meaning that assumptions of the catch-
ment status can be made with more confidence. These two catchments might be used as contrast-
ing examples. The reservoirs in the Vaal catchment have high chl-a (200 mg m™3), cyanobacteria
and surface scum coverage (34 and 5%, respectively). The Phongola catchment has on average low
chl-a (just 13 mg m™?), little cyanobacteria cover (8%) and almost no surface scum occurrence.

Therefore the highly eutrophic Vaal catchment requires high priority as far as eutrophication man-
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Figure 6.4.5: Map of South Africa showing primary drainage regions (catchments) in relation
to the position of South Africa’s 50 largest reservoirs (WRC, 1996). Catchments are colored
according to the mean chl-a concentration for reservoirs located in that catchment (see leg-
end). The catchments are labeled.

Table 6.4.2: Catchment integrated means and trends for chl-a, A, and A,. For trend
columns the format is: mean (relative trend), mean significant trends only (no. significant

trends).

Catchment N chl Ay A Achl as, aa,,
mgm~ 3 % % mgm 3y ! %y ! %y !

Vaal 13 195.8 33.6 4. -1.36 (-0.01), 4.66 (2) -1.54 (-0.05),-5.88(2)  -0.18 (-0.04),0.37(2)
Phongolo 8 13 7.9 o -1.26 (-0.10), -0.24(3) -1.31 (-0.16), -1.93(5) -0.01 (-0.35), -(-)
Limpopo 5 170 23.7 7.9 -7.55 (-0.04), -17.81(2) 1.59 (0.07), 2.43(2) 0.38 (0.05), 1.00(1)
Olifants (E) 5 61.1 8.4 0.2 -1.95 (-0.03), -12.02(1) 0.57(0.07),0.11(2) -0.01 (-0.04), 0.13(1)
Thukela 4 105.2 4.2 1 2.45 (0.02),-2.13(1) 0.57 (0.14), 2.22(1) 0.18 (0.19),-(-)
Great Kei 3 174.6 2.9 0.4 2.68 (0.02),-23.92(1) 0.22 (0.08), 0.85(1) 0.18 (0.51),0.27(1)
uMngeni 3 11.3 2.9 0.7 -0.18 (-0.02), -1.43(1) 0.58 (0.20), 0.86(2) 0.06 (0.09), -(-)
Bree 2 15.9 9.2 o -3.59 (-0.23),-3.59(2)  -2.72 (-0.29),-2.26(1) -(-),-()
Orange 2 121 6.4 1.5 3.32 (0.03), -(-) -1.09 (-0.17),-1.71(1)  -0.45 (-0.31),-0.45(2)
Crocodile (E) 1 28.6 1.9 o -15.33(-0.54),-15.33(1)  -0.93 (-0.49),-0.93(1) -(-),-()
Great Berg 1 126 101 0.4 -51.14 (-0.41),-51.14(1) -1.51 (-0.15), -(-) 0.12 (0.32), -(-)
Great Fish 1 427 25.1 3.7 -27.36 (-0.06), -27.36(1) -0.74 (-0.03), -(-) -0.7 (-0.19), -0.70(1)
Mzimvubu 1 487.9 4.5 2.5 -67.4 (-0.14), -67.40(1) -0.18 (-0.04), -(-) -0.2 (-0.08), -(-)
Sundays 1 696.8 56.1 31.2 47.08 (0.07), 47.08(1) -4.67 (-0.08), -4.67(1) -1.58 (-0.05), -(-)

agement is concerned, whilst the Phongolo catchment is substantially less impacted by eutrophica-
tion and cyanobacterial blooms. The impact of eutrophication on catchments in descending order
is Vaal, Great Kei, Limpopo, Orange, Thukela, Olifants, Bree, Phongolo, and uMngeni (excluding
catchments with only one observation). Assuming the reservoirs act as sentinels and integrators
of the broader catchment, this information might be used to establish high priority catchments for
eutrophication management.

As far as catchment trends are concerned, the results should be interpreted with caution, tak-
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ing into account the number of reservoirs in the catchment, and the significance of the underlying
trends. The overall catchment trend is calculated as the the mean of significant and non-significant
annual trends (table 6.4.2). This value is normalised by the mean value for the catchment to calcu-
late the relative trend. The mean of significant trends only and their number is also indicated for
each catchment. The latter statistic might be used with more confidence, since the non-significant
trends have higher uncertainty. However, given the very few number of trends significant at the
95% level, the mean of all trends can be used although with less certainty. The following discussion
pertains only to catchments with more than 2 reservoirs, since it is difficult to make catchment-scale
conclusions taking into account only one or two reservoirs.

For chl-a almost all the catchment-scale trends are negative (exception of Thukela and Great
Kei). This is also reflected in the mean of significant only trends (however Vaal becomes positive).
Therefore, it would seem that the drivers of hyper-nutrification decreased in most catchments over
the time series (see section 6.3.2). Limpopo has the largest negative trend of -7.5 mgm™ y 7, rel-
ative 4% y . The largest relevant trend is for Phongolo at -10% y~*. Cyanobacteria cover however
has positive trends in all these catchments with the exception of Vaal and Phongolo. uMngeni has
the largest relative trend (20%) at 0.5% y . The significant only trend calculations gives a similar re-
sult. Therefore overall it appears that cyanobacterial blooms became more common over the time
series in most catchments. Similarly for surface scum, positive trends dominate the catchments
(exception of Vaal and Phongolo). All the means of significant only trends are positive. Limpopo
has the greatest positive trend at 0.38% y~* (5% y " relative trend) but the largest relative trend
is for Great Kei at 50% y~*. As for chl-a the number of significant trends per catchment is very
small (max.=2). It is therefore difficult to make confident assertions regarding the change in sur-
face scum coverage (and other variables) over the time series, apart from the tentative conclusions

drawn here.

6.5 CONCLUSIONS

The study presented time series of chl-a, cyanobacterial blooms and surface scums for the 5o largest
South African reservoirs from 2003 to 2012 as observed by MERIS. The status, seasonality and
trends of each of the variables has been presented for each of the reservoirs. The majority of the so
reservoirs are hypertrophic (60%) with mean chl-a > 30 mg m . The seasonality of chl-a produc-
tion is strongly biased towards summer months, which peaks during January and February. Trends
in chl-a suggest that overall eutrophication became less severe in the 50 reservoirs between 2003
and 2011. Cyanobacterial blooms were detected in all of the 50 reservoirs over the time period, but
atinsignificant/little coverage in 27 of the reservoirs. Persistent and extensive cyanobacteria cover-
age was determined for g reservoirs. Cyanobacteria blooms were strongly seasonal, with maximum
coverage occurring during summer and autumn months. The detection of several reservoirs pos-

sessing winter cyanobacteria coverage maxima suggests this is a phenomenon occurring in South
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African lakes, the cause of which is unknown. The overall trend in cyanobacteria coverage is un-
certain, with an approximately equal number of significant positive and negative trends. Therefore
the change in cyanobacteria occurrence in South African reservoirs remains uncertain.

Surface scum conditions existed in 33 of the 5o reservoirs over the time period. However, for
most, the coverage was insigniﬁcant, with intermediate to extensive coverage occurring in only
seven reservoirs. The seasonality of surface scum coverage was strongly biased towards summer
and autumn months, reaching a maximum in February. Therefore, measures should be taken to re-
duce the risk of exposure to surface scums at these reservoirs. A new classification scheme for South
African lakes combining the mean satellite estimates of chl-a, cyanobacteria and surface scum cov-
erage identifies reservoirs most severely impacted by eutrophication and cyanobacterial bloom:s.
This information can be used to prioritise management and mitigation strategies, in order to re-
duce health risks.

Anindependent validation of chl-a estimates from the MPH algorithm showed that gross trophic
status can be determined with a high degree of confidence in both cyanobacteria and eukaryote-
dominant waters. Oligotrophic and mesotrophic waters (chl-a < 20 mgm™) are more challenging,
and further work is needed to elucidate and clarify the possible sources of error for estimating chl-a
using the MPH approach. Detailed case studies showed that the spatial distribution and chl-a esti-
mates in eukaryotic algal blooms can be determined with a high degree of certainty in small lakes.
In addition cyanobacteria detection can be performed sufficiently, and surface scum detection with
a high degree of confidence in eutrophic cyanobacteria-dominant waters.

The study has demonstrated both the power and efficiency of satellite based monitoring per-
formed on a sub-continental scale. Time series of satellite-based chl-a estimates such as those de-
rived here may be used in ecosystem models in order to establish the role played by lakes in global
biogeochemical cycles. The study can also contribute to new avenues of research into catchment-
scale climatological drivers of eutrophication and cyanobacterial blooms, as well as to models for
predicting phytoplankton biomass and surface scum formation from meteorological and hydro-
logical variables (e.g. Soranno, 1997). It has also demonstrated how satellite-based monitoring
systems can play a vital role in supplementing traditional in sifu monitoring networks to fill infor-

mation gaps.
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THE RESULTS OF THIS STUDY confirm the hypothesis that cyanobacteria can be differentiated from
algae in optically-complex inland waters using the remote sensing techniques developed in this the-
sis. These include a simple empirically-based algorithm called the maximum-peak height or MPH
algorithm (Chapter 2), as well as an advanced radiative transfer based algorithm which accounts for
all of the inherent optical properties of the water constituents in waters ranging from oligotrophic

to hypertrophic states (Chapter s).

The MPH algorithm was found to successfully differentiate blooms of the cyanophyte Microcys-
tis aeruginosa from those dominated by eukaryotic phytoplankton on the basis of enhanced backscat-
tering in the red/near infra-red (NIR) region of the spectrum, as well as on the basis of unique re-
flectance features associated with absorption and fluorescence of cyanobacterial pigments. The al-
gorithm also provides chl-a estimates across large trophic gradients, allowing for the effective char-
acterisation of the severity of eutrophication in inland waters. In addition to providing a reliable in-
dex for the presence of cyanobacterial blooms, surface scum and floating vegetation, the MPH also
provides quantitative estimates of cyanobacterial biomass, distinguishing it from previous efforts
including the Floating Algal Index (Hu, 2009) and Maximum Chlorophyll Index (Gower et al.,
2005) algorithms which provide only an index. Importantly, the MPH algorithm is applied to
top-of-atmosphere data which effectively bypasses the need for an aerosol atmospheric correction

which is typically prone to large errors over small and optically-complex inland water targets.

The absorption properties of the dominant water constituents of three reservoirs, namely Hart-
beespoort, Loskop and Theewaterskloof, and their relationships with biogeochemical variables,
have been characterised in detail in Chapter 3. This adds to the growing knowledge of the optical
properties of optically-complex inland waters, particularly those that are hypertrophic. The occur-
rence of small-celled cyanobacteria species such as M. aeruginosa in inland waters caused a viola-
tion of the typical relationship between phytoplankton absorption, cell size and biomass usually

observed in open-ocean waters as a result of the package effect.

The detailed investigation in Chapter 4 is one of the first studies that provide a full simulation
of the effects of vacuole features on the optics of phytoplankton. The study has characterised the
optical properties of M. aeruginosa and investigated the optical consequences of intracellular gas
vacuoles using a two-layered sphere model. Gas vacuoles change the shape of the volume scattering
function (VSF) and substantially increase spectral backscattering while simultaneously decreasing
forward scattering. The study confirms that gas vacuoles lead to enhanced reflectance associated
with cyanobacterial blooms and impart distinctive optical characteristics to vacuolate cyanobacte-
ria. The two-layered model reproduced features in the spectral attenuation and the VSF that have
previously been observed for vacuolate cyanobacteria, and therefore is a suitable model for inves-
tigating the effects of gas vacuole internal structure. These findings substantiate, from a bio-optical
perspective, those of Chapter 2 that M. aeruginosa blooms might effectively be distinguished from
dinoflagellate/diatom dominated assemblages on the basis of enhanced reflectance in the red and
NIR.
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An advanced radiative transfer based inversion algorithm for the detection of phytoplankton
type and size, and IOPs, was successfully used to distinguish between high biomass blooms of M.
aeruginosa and those of the large-celled dinoflagellate Ceratium hirundinella. The retrieval of size
and type was more challenging in meso/oligotrophic conditions given the small contribution by
phytoplankton to the bulk absorption/scattering budgets, and relatively larger contributions by
dissolved and non-phytoplankton particulate matter. The absorption properties of the latter were
retrieved more adequately in meso/oligotrophic waters. Chl-a and phytoplankton absorption was
sufficiently retrieved over the entire trophic range of the data, however size and type detection is
optimal when phytoplankton are significant or dominant optical contributors. The study confirms
that robust detection of phytoplankton type and the discrimination of cyanobacteria from algae is
best performed in higher biomass blooms (chl-a > 20 mg m™*) because of the optically-complex
nature of inland and near-coastal waters, as is the case for cyanobacteria accessory pigment phy-
cocyanin (Kutser et al,, 2006). A greater understanding of the ecology and population dynamics
of cyanobacteria and algae in inland waters is required in order to fine-tune the optical models
used by algorithms aimed at phytoplankton functional type detection. The full potential of the
inversion algorithm will be seen through its application to satellite-based earth observation data;
however this is dependent on a suitable atmospheric correction providing accurate water-leaving

reflectance estimates for inland waters.

Finally, the status and trends of eutrophication, cyanbacterial blooms and surface scums were ef-
fectively characterised for the 5o largest South African reservoirs between 2002 and 2012 through
application of the MPH algorithm to the MERIS Full Resolution data archive. Most of these
reservoirs were determined as hypertrophic (60%), and cyanobacterial blooms occurred at least
once in all 50 of the reservoirs over the time series. Cyanobacterial surface scum (chl-a > 500 mg
m?) occurred in 33 of the 5o reservoirs and was timed with the onset of warmer temperatures
during the summer months. Validation of the MPH algorithm using an independently acquired
dataset indicated that the algorithm provided a reliable estimate of chl-a and trophic status, high-
lighting its potential for re-parameterisation using a dataset from lakes worldwide towards the de-
velopment of a standard chl-a product for inland waters. The Chapter unequivocally shows the
considerable contribution that systematic and near real-time earth observation can make towards
both local monitoring efforts, and international initiatives such as the Group on Earth Observa-
tion water societal benefit area. This is one of the most comprehensive uses of earth observation
data for eutrophication studies. Given that water quality is a critical issue in South Africa and
around the world, the study demonstrates the considerable role that earth observation can make
towards human health and environmental monitoring objectives (see www.afro-sea.org.za/
php/damSearch. php for near real-time dissemination system for the MPH product, credit: Andy
Rabagliati).

Several recommendations and areas of future research have been highlighted by the present

study:
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o Further research is required to enhance the cross-applicability of the MPH algorithm and
the method used for cyanobacteria detection, which should be re-parameterised to provide
the first global algorithm for quantitative eutrophication and cyanobacterial bloom detec-
tion. Furthermore the MPH should be adapted to the spectral characteristics of the planned
Ocean and Land Colour Instrument (OLCI) on Sentinel-3 and other hyper/multispectral
space-born instruments, including the South African EO-SAT 1 and Sentinel-2 high reso-
lution visible sensors. The MPH should also be used to back-process the entire MERIS FR
archive to provide the first global estimates of eutrophication and cyanobacteria occurrence

for the world’s freshwater systems.

« Despite the research conducted in this study, the precise (back)scattering properties of fresh-
water (vacuolate) cyanobacteria remain largely uncharacterised. Further research should be
undertaken to measure the VSF over the full angular range to more adequately determine
the magnitude and shape of cyanobacteria backscattering, and further validate the two-layer

model output regarding the impact of gas vacuoles on the IOPs.

« The advanced radiative transfer inversion algorithm should be modified for retrievals of size
and type from multi/hyperspectral satellite remote sensing instruments such as MERIS, the
Hyperspectral Imager of the Coastal Ocean (HICO) and the planned OLCL. This however is
dependent on the availability of an accurate water leaving reflectance product for inland and
near-coastal waters, which should the subject of ongoing research. The optimal initial con-
ditions for the inversion algorithm should be determined on a spectrum or per-pixel basis

using a classification algorithm and/or a type-based pixel flagging procedure.
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