Page 8 of 8, Date of printing: 27.02.2005, 22:45

Enterprise PHP Coding Standards

Robert Peake

Bringing Quality Control To Business Critical PHP Applications

Robert Peake

This article details the enterprise PHP coding standards I have employed and found useful in developing business-critical web applications. In part one of this article, we will look at standards for architecture and testing. The goal here is to be confident in the functionality of your code. In part two, we look at standards for how the code is written. Here the goal is maintainable code and well-defined team roles to make developing the application as efficient as possible. After reading this article, you should be armed with a wealth of best-practice information to make your Enterprise-class PHP projects run more smoothly and effectively – whether they are being served up from your corporate web server farm or downloaded by the masses on Sourceforge.

Introduction

There has been a lot of discussion recently in the PHP Community about PHP in the Enterprise. The topics have shifted over time from, "Is PHP ready for the Enterprise?" to "How do we convince the Enterprise that PHP is ready?", to "PHP is in the Enterprise – now, how do we sustain and increase the presence?" The truth is that while many large companies use PHP, many more are ripe for it. As the adage goes, "You don't get a second chance to make a first impression." A badly implemented PHP project can arouse considerable mistrust in entrenched ASP/JSP programming shops.

I firmly believe that the biggest obstacle to PHP becoming widely accepted in the Enterprise is not a lack of useful features, obscure faults within the PHP4 parser, or any other esoteric technical detail. The fault, dear coders, lies within ourselves. The massive accessibility of and community support for PHP means that the PHP community is composed of programmers from diverse backgrounds, with varying understanding of best practices in team development. As a result, one of the major plagues of PHP is what I call the "spaghetti western" -- spaghetti code written by cowboy coders with little or no documentation. Ever seen one?

This article details the enterprise PHP coding standards I have employed and found useful in developing business-critical web applications. In part one of this article, we will look at standards for architecture and testing. These are standards the code has to meet in terms of functionality. The goal here is to be confident in the functionality of your code. One major piece of this is safeguarding against introducing bugs while fixing bugs. This is one of the major reasons PHP programming shops sometimes get a bad reputation.

In part two, we look at standards for how the code is written. Here the goal is maintainable code and well-defined team roles to make developing the application as efficient as possible. One trap we safeguard against here is the PHP developer-come-designer. Coders should be able to code and designers should be able to design – harmoniously. This is often a stretch for programmers used to being a “Jack of all trades”. Yet the benefits of dividing up the labour involved can pay off in big ways. In this article, we show you how to lay the groundwork to make that division clear and functional.

>>textbox beginning<<

Overview

Part I: Standards For Architecture And Testing

Goal: Code Functionality Confidence
· Create simple use-cases for your application

· Create acceptance tests based on use-cases

· Where possible, create and run automated regression tests for library components

Part II: Coding Standards

Goal: Code Maintainability, Effective Team Work
· Subscribe to some basic, agreed upon coding standards

· Use PHPDocumentor to document all functions and classes

· Separate Code From Content (html)

· Separate Content From Layout and Formatting (css)

>>textbox end<<

Part I: Standards For Architecture And Testing

The goal behind creating standards for architecture and testing is to be confident that the functional requirements of your application are fulfilled before “going live” with any release (including the first one). Such standards are not new to software development projects, though they may be new to some PHP projects. Many of the methodologies used for creating executable applications are less applicable to web development, and some modalities are best suited to a particular language. In this section, I will provide insight into the techniques that seem most appropriate to PHP development specifically, striking a healthy balance between the need to develop robust applications and the need to develop on time and in budget.

Creating simple use-cases for your application

Frankly, I do not believe that formal use-case analysis is necessary for most PHP development projects – even big ones. The underlying principle, however, of deriving requirements from role-playing end-user scenarios, can be extremely helpful. Clearly, through the democratic process of the open source community, we have seen that the packages that receive the most attention are packages that do what the end-user wants them to do, regardless of what the programmer thinks will be a good idea. Putting the programmer into the end-user’s shoes via what I call “simple” use cases is an effective and relatively painless way to define programming requirements that produce features real people will want to use.

Here is a very simple example of a simple use-case for an eCommerce application:

1. User clicks on the buy-now button under a product title and is taken to updated shopping cart

2. User clicks on checkout

3. If User is logged in, user is taken to payment page

4. If User is not logged in, user is taken to login page. User logs in.

5. User enters payment information on payment page and clicks submit

6. User is taken to order confirmation page

Seems pretty obvious, doesn’t it? Yet writing out these steps gives you a repeatable, measurable set of steps to determine if your application is doing what it is supposed to do. In this example, there are obviously numerous other things that can happen at any stage of the process. For example, the user could click away from the page to another navigation item. Obviously, the application should remember the state of the shopping cart and provide a means to get back to the cart to check out. Given that using PHP sessions or a similar mechanism to handle this will provide the same results no matter where the user veers off from the checkout process, a simple second case should suffice:

1. User clicks on the buy-now button under a product title and is taken to updated shopping cart

2. User clicks on a navigation item and is taken away from the checkout page

3. User clicks on ‘back to shopping cart’ link

4. User is taken to updated shopping cart

Again, we have a simple, practical statement of what our shopping cart should do. Next step: converting these into tests.

Creating acceptance tests based on use-cases

The term “acceptance tests” is one I borrow from Extreme Programming
. They probably borrowed it from someone else. This high-level test can be called many things: end-user test, functionality test, end-to-end application test, useability test, use-case compliance – just to name a few. The point is that this test tells your customer (the person who is sponsoring the project – whether or not they personally will use the application) that the darn thing works.

This level of testing is not only important to prove your application works. It is an invaluable tool to give you confidence before going live with a release. This test should not only be run when the feature it tests has first been built. It needs to be run every time you are ready to release code. This is known as regression testing, and it is an invaluable part of quality assurance. Have you ever fixed a bug only to discover something you were convinced is totally unrelated in a completely different part of the code has been broken by that fix? The embarrassment and frustration of this all too common situation can be avoided by using regression testing.

In the case of the persistent shopping cart, the test is to ensure that the cart information displayed in step 1 is displayed in an identical fashion in step 4. How long do you think it will take to fire up a browser and double-check to make sure the session data is working as expected? Probably no more than a couple minutes. Ideally, this is something you (or better yet, your colleague in quality assurance) would do every time before a new version of the software is released.

Creating automatic regression tests for library components

Web applications, like any other GUI-driven application, can be difficult to test end-to-end in an automated fashion. This is because automating web browser interactions often involves screen-scraping and string mangling to reliably compare the real and expected output. Pear’s HTTP_Request
 library is useful for basic web-browser emulation. Pear’s WWW:Mechanize
 provides more sophisticated form-filling capabilities. Still, for many acceptance tests, the shortest path will still be to fire up a browser and spend anywhere from a few minutes to a couple of hours going through your checklist of tests before releasing new code. Obviously, if you anticipate spending more time on any one test than it would take to program an automated test using a web browser emulator, by all means automate that test. Generally speaking, there will always be some manual work involved for practical reasons.

Library components, such as custom functions or classes designed to be employed in a repeatable fashion in other parts of the program, are often much easier to test in an automated fashion. If you followed the guidelines in section two to document the intended input, output, and side effects of your functions and class methods, you already have a clear blueprint of what needs testing. The most important types of data to test are the “outside cases” – data types that are in the extreme range of acceptable input. For example, often testing zeroes, ones, and negative numbers (where allowed) in math functions can turn up flaws within the algorithm. Furthermore, testing with a good sample of the different types of expected input helps you maintain backwards compatibility as your library components evolve to handle more complex tasks.

Remember: break a single front-end component and that one component no longer works; break a library component and everything depending on that component is likely to misbehave. So, regression testing library components is critical and, fortunately, relatively easy to automate. PHPunit
 and phpt
 are two useful packages for comparing test input with test output to see if the programming requirement has been (and is still) fulfilled for each component of the library. Harnessing these programs within the larger context of an umbrella script can give you immediate feedback about exactly what needs to be fixed or changed to meet your requirements.

Again, I must stress practicality using this approach – if the application to test your components becomes larger and more complex than the components themselves, you might be better off hiring someone to manually perform these tests. The truth is that while there may in fact always be a programming solution to every problem, not every programming solution is time-effective or cost-effective. Be smart, be reasonable, and take the shortest path to quality control that still gives the desired result: quality.

Part II: Coding Standards

In part one, we looked at standards for testing the functionality of code. In this section, we will look at standards for how the code is written. Here the goal is to produce code that is easily maintained by a team with well-defined roles and a clear understanding of what is going on and what is expected. Everyone that has had the misfortune to maintain an unruly code base should appreciate these simple steps to making your team’s code intelligible.

Creating Basic, Agreed Upon Coding Standards

There is a tremendous variance in PHP programming styles. I have seen a lot of them over the years. Like Perl, PHP gives you many different ways of attacking a problem. It will also meet all the functional requirements, whether the underlying code looks like an academic exercise or an entry into an obfuscated code contest. This is often one of the major obstacles to selling the idea of refactoring to the rest of the organization: it appears to work on the surface. To maintain a code base with poor or nonexistent coding standards not only affects programmer morale, but can affect retention. I have seen good programmers practically run screaming from such spaghetti code.

The single greatest way to ensure your team’s code doesn’t scare anyone away is to agree upon some standards. This may not eliminate the need to refactor, but the project will build upon the standards and practices you adopt early on, so the sooner you agree on standards the better. Ideally, you will also want to refactor often throughout the project to make sure not only that your code performs efficiently in light of new features and requirements, but that your coding standards and documentation are in full force. For programmers, this means factoring refactoring into your time estimates. For project managers, this means understanding the value of taking the time to continually refine the code base, using coding standards as a touchstone for quality and a way to actually minimize future frustration.

There is a lot of debate about what constitutes best practices in the community. The Pear Coding Standards
, for example, are a fairly elaborate set of rules akin to the grammar and punctuation rules of a spoken language. For the most part, this level of detail is not absolutely necessary to make sure code is maintainable. Probably the most valuable rule in the Pear Coding Standards document is making use of four spaces instead of a tab. This is a practical point that improves code maintainability. Other practical rules include spacing out and lining up variables, and otherwise avoiding “shortcuts” that seem clever when written but take more time later for someone else to figure out what’s going on. Regular expressions are notorious for this, and should therefore be documented with a brief explanation.

Ultimately, the point is that everyone on your team must agree on standards and use them consistently. Making them practical and easy to remember improves your chances of buy-in. If debate continues on past an unproductive point, the senior programmer should ultimately decide on the standards. Enforcing these standards is everyone’s job. The easiest way is to either program in pairs or (more practical for remote development) at least subject code to review by another programmer. Correcting coding standard violations and giving feedback to the original programmer about their mistake should be as important to the review programmer as making sure the code works well.

Making Effective Use Of PHPDocumentor

While you can get a lot of mileage by agreeing on standards and coding in a legible way, the truth is that not all developers want to dig through code to find out how something works – they just want to reapply it quickly to their own situation. This is especially true in the case of an API or other “library components” we discussed in Part One.

PHPDocumentor is a very valuable tool for creating developer documentation. All functions and classes should be documented using PHPDocumentor DocBlocks and should be tested to make sure that PHPDocumentor can generate documentation from this code without errors or warnings.

More important than just the tool used, the documentation must be written in a useful way. This means:

· Document all input variables, their type, and any ranges (e.g. an integer between 1 and 10)

· Document all output variable(s), and their type(s)

· Document any side effects (e.g. changing a global variable or class variable)

· Describe what the function does or what the class does

· (Optional) Give an example of how to use the function or class

See Figure 1 for an example of a PHPDocumentor DocBlock from the SimpleQuiz
 testing system.

>>textbox beginning<<

Figure 1: DocBlock Example From SimpleQuiz

/**function summarize_numeric_array

 *

 * summarize a numeric (not associative) array

 *

 * return a human-readable list

 * with appropriate placement of commas and 'and'

 * e.g. "foo, bar and baz"

 *

 * @access public

 * @param array $array

 * @return string

*/

 function summarize_numeric_array($array) {

…

>>textbox end<<

Separating Code From Content

Separating code from content means using a templating system. The most basic form of templating system is to simply use PHP itself to only output variables and maybe perform some minimal formatting on the variable output. See Figure 2 for an example of this. Other examples of templating systems include Smarty
 and Flexy
.

>>textbox beginning<<

Figure 2: Simple PHP Template

<table>

 <tr>

 <td>

 <?= $foo; ?>

 </td>

 <td>

 <?= date("l dS of F Y h:i:s A", $bar); ?>

 </td>

 ...

>>textbox end<<

Using a templating system means making a conscious decision to divide programmatically generated content up into variables. The criteria are:

· Where the string will live on the page (layout)

· How the string will look in terms of style (formatting)

The end result is that HTML tags and content should not be output from the main program using print or echo wherever possible. Instead, variables should be passed into the template, and the template should handle outputting the contents of the variable as well as minor formatting (for example, transforming an ISO date into a more human-readable date).

Separating code from content has many benefits. Probably the single greatest impact is maintainability. Not having to think in both PHP and HTML makes a developer's life easier. Much easier. Furthermore, multi-language sites benefit tremendously from using templates because layout and formatting decisions can be applied to all the different language versions of the application. Finally, a template system can be used to change the "skin" or overall look-and-feel of an application without changing the underlying functionality. The SimpleQuiz testing system was designed to be skinnable, and as a result the test look-and-feel can be completely changed (including switching navigation from vertical to horizontal) without having to touch any of the code that drives the testing system itself. We will discuss more of the power of layout-independent content when we look at separating content from layout and formatting via css.

There are, of course, some exceptions to the use of templates. For example, when returning large sets of MySQL data into a table, it is often much faster to display the results of mysql_fetch_array() or mysql_fetch_assoc() directly using echo. This kind of trade off can be easily achieved by using PHP as your template system. Exceptions made for the sake of performance are important to note in your documentation, so that developers understand you were being deliberate, not lazy, in your choices.

Another major benefit of a template engine is division of labour. Programmers can program, and designers can design in HTML, then paste in the appropriate tags to display the programmatically generated content. This is also one of the major benefits of the third guideline: separate content from layout and formatting. This is partly achieved through using a template engine. The other half of the equation is Cascading Style Sheets or CSS.

Using CSS To Separate Layout And Formatting From Content

While this may at first seem more like a design issue than a PHP issue, the truth is I have seen way too many lines of code that look like what you see in Figure 3. Using CSS, you can separate the formatting and layout from the content itself, as shown in Figure 4.

Figure 3: Before CSS

<?PHP

$foo = '<center>'.$bar.'</center>';

?>

...

<?= $foo ?>

Figure 4: After CSS

<style type="text/css">

.error {

 color: #FF0000;

 text-align: center;

}

</style>

...

<div class="error"><?= $bar ?></div>

In practice, it is also a good idea to move CSS code as well as JavaScript code off the main page, into separate files and use <link rel=...> to make the contents of these external files available on the main page. It is not only helpful for pushing real content further up the page for purposes of search engine ranking, but it keeps the HTML less cluttered and means less scrolling to get at the body content.

Dynamically generating CSS is typically a bad idea. Unless the application absolutely needs this, generating CSS in PHP puts responsibility for the style elements in the programmer's court, rather than the designer's court. Calling up different style sheets that can be manipulated statically by a designer is a different matter -- this is an excellent way to provide a different look-and-feel to your web application based on, for example, the company of the person that is using the application. Such 'rebranding' can often be rolled together with custom content on a per-company basis to create a unique portal environment.

The power of CSS as a means to replacing tables for layout is strikingly displayed in the CSS Zen Garden
. In practical usage, I find a combination of tables and CSS still makes for the fastest and most efficient way to create layout. As browsers (and designers) mature, it appears that <div> will be fast replacing <table> not only for formatting and style but layout as well.

Keeping content separate from layout keeps both the division of work and the division of elements (PHP, HTML, CSS) very clear. This increases maintainability as well as accountability for each aspect of the site -- designers design, coders code.

A word about Centralised Versioning

One important part of coding PHP in the Enterprise is using some form of versioning system to keep track of code. CVS and Subversion are good examples of systems that can help keep track of versioning. This can be a useful addition to the rest of your quality control procedures because in the event of a problem, you can “roll back” to a previous version if something goes wrong. It is one more layer of insurance against the frustration of bugs in a production system. Furthermore, a centralised versioning system can help enforce team roles and improve collaboration. By checking out code from a single source to run regression tests, you ensure that no bugs sneak in to the project due to last-minute requirement changes. You can also use centralised versioning to facilitate code reviews, and can automate the process of building up-to-date documentation using simple scripts to check out and then build documentation from PHPDocumentor.

Conclusion

PHP has come a long way in the past several years. As of this writing, Zend and IBM have forged a partnership to increase PHP’s exposure to the enterprise as a reliable platform for business-critical applications. The truth is that PHP has been up to the task for a long time. Now, it is time for PHP programmers to embrace Enterprise software design best practices and, more importantly, tailor them to the unique needs of this unique language. In this article I have shared a number of the tactics that have made coding critical PHP applications safer, more robust, and ultimately more fun. Harnessing the power and agility of PHP by employing good standards and quality control makes for a nearly unbeatable combination in the web application arena. Until next time, happy coding, project managing, and quality-controlling!

About The Author

Robert Peake is a regular contributor to International PHP Magazine. Reach him online: cyberscribe@php.net

Links and Literature

� Extreme Programming: http://extremeprogramming.org/

� HTTP_Request: http://pear.php.net/package/HTTP_Request

� Pear’s WWW:Mechanize:FormFilter: http://search.cpan.org/~corion/WWW-Mechanize-FormFiller-0.05/lib/WWW/Mechanize/FormFiller.pm

� PHPUnit: http://pear.php.net/package/PHPUnit

� PHPT: http://qa.php.net/write-test.php

� Pear Coding Standards: http://pear.php.net/manual/en/standards.php

� PHPDocumentor: http://www.phpdoc.org/

� SimpleQuiz testing system: http://www.simplequiz.com

� Smarty: http://smarty.php.net

� Flexy: http://pear.php.net/package/HTML_Template_Flexy

� CSS Zen Garden: http://csszengarden.com/

