
Ideas for Today and Tomorrow

STRATEGIC INFRASTRUCTURE RECOMMENDATION FOR XXb

XXa = Parent Company Business Unit a XXb = Company XX Business Unit b OPS = Global Support Team NWT = XXb's Network Facing Support Team

Goals and Objectives at Hand

Vision Statement, Approach and Methodology for XXb Infrastructure

A Consolidated, Standardized, Centralized, Shared Computing Environment which Promotes the Efficient Use of Computing Resources, Effective and Efficient Application Lifecycle Processes and Ease of Maintenance while Understanding the Fiscal Responsibilities of XXb

Approach and Methodology

Full Understanding of Requirements and Environments Matching Requirements to Correct and Desired Processes Utilizing Identified
Processes to Fully
Optimize the
Management of
Infrastructure

Application of Services
Framework
Methodology at
Targeted Areas of
Requirements

Engaging Proper Capacity Planning Practices Required to Enhance, Promote Maintain and Report off of the Targeted Environments

CURRENT INFRASTRUCTURE STATUS

Today's Situation - Make Up

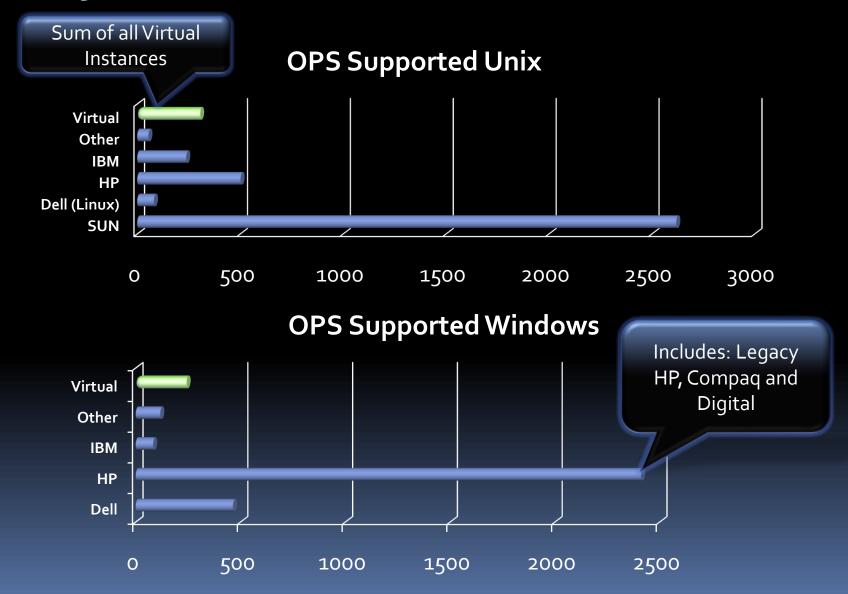
XXb Infrastructure Counts

12k Servers Total

2.5 Petabytes of SAN OPS Supported

ΙT

NWT

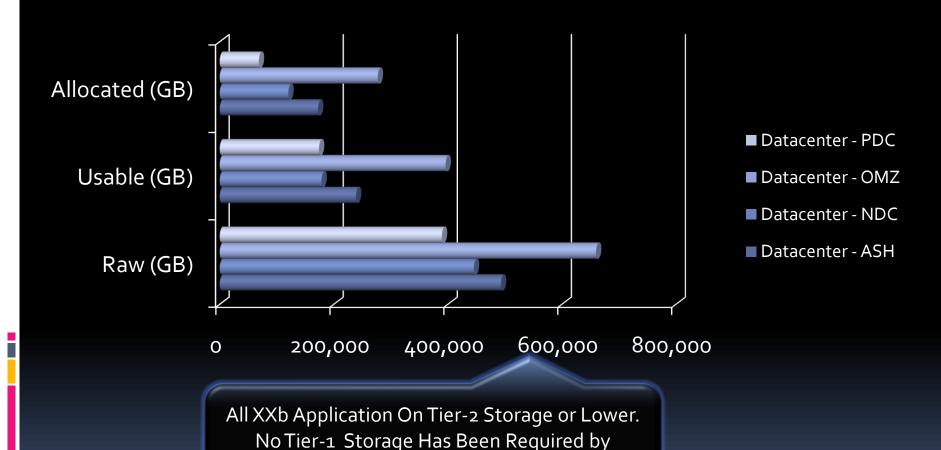

XXb Supported

Call Processing (NWT) + IT


Other Groups

XXb Supported
Systems Do Not
Adhere to
ARCH/OPS
Standards or
Processes Today

Today's Situation - Counts


Today's Situation - Counts

XXb Supported Windows

XXb Enterprise SAN Utilization

Applications in Past 3 Years

Applications in Past 3 Years

Unix Server Breakdown by DC*

* OPS Supported Breakdown Only

	DC1	DC2	DC3	DC4	DC5	DC6	DC7	DC8	DC9	Non DC	DC10	Total OPS Managed	Total XXb Managed
SUN	130	177	250	167	312	718	19	69	329	578	67	2686	427
Dell	3	18	19	0	16	16	0	0	7	5	0	81	564
НР	102	69	156	7	44	33	10	2	55	126	6	508	1256
IBM	42	42	24	16	40	65	1	10	8	32	40	278	345
Other	5	0	1	1	1	6	0	0	6	39	0	54	0
Virtual	1	161	34	0	50	17	0	36	3	4	26	331	0
Total	282	306	450	191	413	838	30	81	405	780	113	3607	2592

Windows Server Breakdown by DC*

* OPS Supported Breakdown

	DC1	DC2	DC3	DC4	DC5	DC6	DC7	DC8	DC9	Non DC	DC10	Total OPS Managed	
Dell	130	18	11	0	9	180	16	9	11	194	16	464	0
НР	3	512	295	88	154	528	41	27	92	619	55	2411	40
IBM	102	0	4	0	3	5	0	2	42	24	3	83	0
Other	42	0	2	0	2	0	0	8	0	31	74	117	0
Virtual	5	73	60	0	24	82	3	0	0	0	0	242	0
Total	277	530	312	88	168	713	57	46	145	868	148	3075	40

Storage Utilization Breakdown

Location	Raw (GB)	Usable (GB)	Allocated (GB)	Total Ports	Active Ports	% Ports Active	Total Hosts
Datacenter - ASH	493,139	238,976	172,501	924	395	43	75
Datacenter - NDC	445,691	178,533	120,440	700	291	42	37
Datacenter - OMZ	659,893	396,134	277,129	1,164	639	55	147
Datacenter - PDC	389,570	174,100	68,592	524	247	47	17
Totals :	2,025,050	1,010,747	657,626	3,312	1,572	47	276

Data provided by UISreporting, Unknown if OPS Will Maintain Reporting Portal for XXb

OPS Will Maintain Reporting Portal for XXb

Today's Situation - Functional Farm

Quantifying Use of Shared Services SQL/Oracle/Web Services vs. Stand Alone Instances (75%-90%)

XXb MS SQL Farms

Most MS SQL Needs Satisfied by XXb Shared Environments

Capacity Managed by XXb DBA Team XXb Web Services Farms

Most Citrix and Right Fax Satisfied by Shared Environments

Most of XXb Web Hosting (non Digex) on Shared Environments

Capacity
Managed by OPS

XXb Oracle Farms

High Performance Midrange Shared Environments

Intel Scalable and High Availability Systems

Capacity Managed by XXb DBA Team

No Single Centralized Entity Manages Overall CPU and Storage Capacity, Trending or Long Term Financial Requirements

Today's Situation - Farms

MS SQL

35 Servers

- HP Intel Blades
- HP Intel Racks
- Dell Intel Racks

673 Databases

Windows 2003

Oracle

69 Servers

- HP Integrity
- Dell Intel Racks

146 Databases

Capacity for Another 100 Databases

HP UX 11i and Red Hat Linux

Web

360 Servers

- •HP Intel Rack
- Hp Intel blade
- Dell Intel Rack

400+ Departments

4000+ Websites and SharePoints

> 2600+ RightFax Users

3000+ Citrix Users

Windows 2003

Today's Situation - Shared Services

2 HP Super Domes

12 Hard Partitions & 2 Virtual

Application Instances

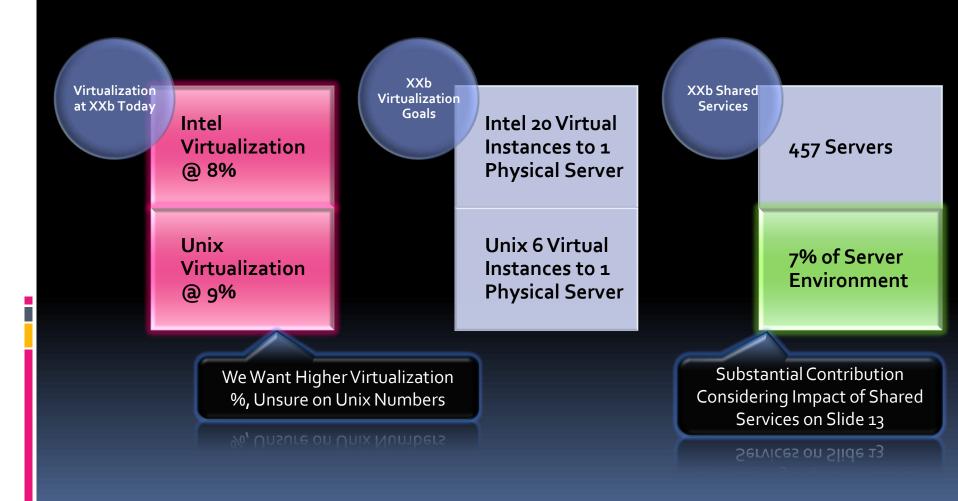
HPUX Itanium Systems, VMs and Hard Partitions

Partitions

3 HP Integrity Systems

7 Hard Partitions & 11 Virtual

Application Instances


60 VMWare Farms 60 Physical Servers

450 VMs

45 Linux VMs and 405 Windows 2003 VMs

Windows 2003 Vivis

Today's Situation Shared Services Counts

Today's Situation - XXb Inventory

Inventory Control

ASST Mgmt for XXb Utilizing Feeds from AI, Manual Methods and Interface with Application Information ProdA for OPS
with No Current
Interface with
Detailed
Application
Information and
Feeds form Tivoli
(Unix) and SMS
(Intel)

ProdB Used for COD Prior to ProdA. Mainly Utilized by ARCH Organization to Track New Inventory No Feeds
Between ProdC
and ProdA and
Working on
Manual Feeds
from ASST
Mgmt to ProdA

Working on ASST Mgmt and ProdC Feeds 3 Inventory Tools, Various Manual Feeds and Interfaces

Today's Situation - XXb Monitoring

Monitoring

XXb
Monitoring
Practices
Merging to a
Single XXa
Standard and
Dashboard

Event Monitoring Only Today's
Standard is
BMC for XXb
and XXa,
Looking at
Other Options
for Open
Systems

Mainframe Choice is SPOC (in house) and CA's OPSMVS.

Requirements are Driving by XXa Only

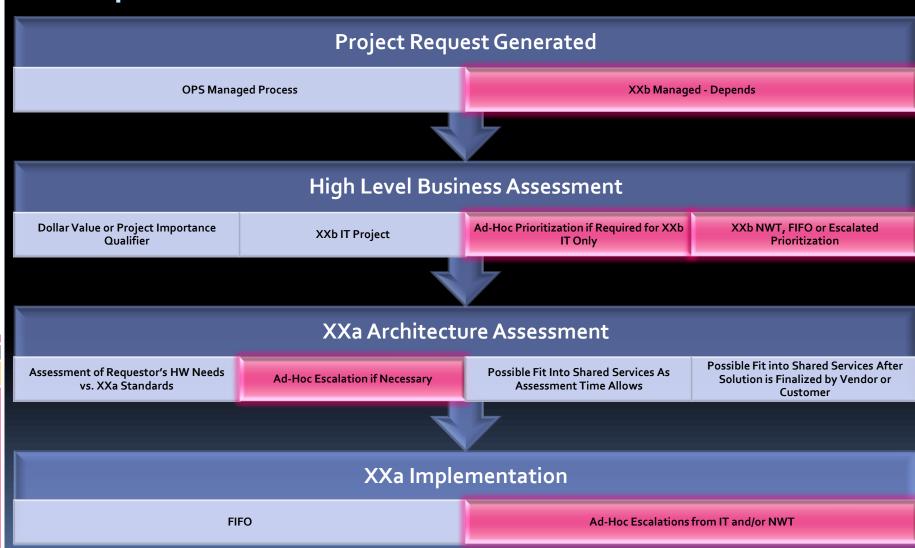
Today's Situation - XXb Capacity Planning

Capacity Planning/Global Dashboard

No Enterprise Capacity Planning @ XXb Ad-Hoc Performance Monitoring Split Between Midrange and Intel

No Global Dashboard Today, No Current Plans XXb's Previous
Global
Dashboard
Capacity
Planning on
Permanent
Hold Status Due
to not Matching
XXa Standards

Shared Services
Capacity
Planning Left to
Various
Organizations
Across Business
Units


Requirements are Driving by XXa Only

XXb Global Capacity Planning Scope and Reporting

	Performance Analysis	Trending & Reporting	Overall Dashboard
By Segment	8	*	8
Ву VP	*	*	(%)
By OS	(8)	*	(*)
By Functionality	(8)	*	
By Data Center		*	
By Vendor		***	*
By Application		*	
Ad-Hoc Request			

No Current Effort to Bring Capacity Planning to XXb Infrastructure. Previous XXb Project to Bring True Capacity Planning Has Been Halted by XXa @ a Cost to XXb of \$2m and 1Year of Development and Planning (4FTE Over 1Year's Time)

Current XXb Infrastructure Request Process

Summary of Current State

XXb Infrastructure

- Matured Farmed Subset of Shared Services
- Small Application Virtualization Footprint
- No Centralized Entity Overseeing Current Shared Services

Processes

- Gap Between XXb Needs and Current XXa Approach
- Lack of Global Infrastructure Request Processes
- XXb NWT Being Isolated

Metrics

- Only Ad-Hoc Performance Request Available
- No Plans from XXa for XXb Capacity Planning
- Lack of Feedback From XXb For Monitoring or Capacity Planning
- Various Non Interconnected Inventory Directions

Process

RECOMMENDATIONS

Available Options


Adhere to Direction, Processes and Standards from XXa

- Benefits
 - ARCH/OPS would benefit from one set of standards
 - Easier XXa Process
 Integration for ARCH/OPS
- Risks
 - XXa direction, processes and standards not flexible due to nature of XXb
 - Cost associated with blanket standards
 - Global mandates from XXa based on downtime risk not criticality of application

Provide and Manage Detailed Requirements from XXb

- Benefits
 - More flexible and dynamic standards benefits XXb environment
 - Lower cost
 - Faster project implementation
- Risks
 - More resource intensive for XXb to manage
 - Create initial work for ARCH and OPS

Process Recommendations

"Bridge" Process XXa and XXb

XXb Infrastructure Requirement Generated from IT and NWT

Existing or New Growth

Shared Services Growth/Enhancement

IT and NWT Pre Deep-Dive Process (Modified)

Justification Understood and Approved

Project "Scrubbed" Through Shared Services Long/Short Term Criteria

"Weight Factor" Prioritization

New "Scrubbed" Requirement is Clean, Justified and Prioritized for Faster Processing

ARCH Approval and Assessment is Expedited

Benefits ARCH/OPS and XXb

Responsibilities Detail on "Bridge" Process Between XXa and XXb

Responsibilities of "Bridge" Process (Owners{requirements or project})

Capacity Planning

- Trending
- Capacity Planning
- Reporting
- Inventory

Strategy

- Interface with ARCH and OPS for future and current strategies
- Recommendation based on XXb footprint and feedback
- Major Project Level Assessment

Financial

- Responsible for Silo and Shared Services Maintenance and Budget
- Chargeback
 Schema for Shared
 Services

Vendor (Expectation) Management

- XXa (ARCH/OPS)
- HW/SW Vendors

"Bridge" Process XXb and Dev

Communication Path to Dev Segments

Technology and Strategy Communication

Review of Each Segment Requirement and Direction

Standard/Direction Feedback Mechanism

Creation of Global Infrastructure Request Encompassing XXb IT as well as XXb NWT

Single Path for All Requests
(Path to Assessments or Exemptions)

Single Source of Infrastructure Requirement Reporting

Architecture Assessment and Pre-Scrub

Application of Shared Services to Requirements for Infrastructure

Requirements Gathering for Large Projects

Responsibilities Detail on "Bridge" Process Between XXb and Dev (IT, NWT)

Responsibilities of "Bridge" Process (Owners)

Communication

- Identification of Dev POCs From Each Segment
- Share in Current and Future Roadmaps (HW and SW)

Strategy

- Understand IT, NWT Directions and Impact to HW/SW Infrastructure
- Recommendation based on XXb footprint and feedback

Financial

- Secure Funding for Shared Environments or Large Scale Projects from Departments
- Chargeback
 Schema for Shared
 Services

Process

- Process of Engagement Creation
- Feedback
 Mechanism
 Between IT/NWT
 and XXa

Summary of Process Recommendations

Mgmt

- Need XXb representation to match ARCH/OPS area of ownership to help drive XXb Global Requirements
- Need to bring NWT into mainstream decisions and strategies as they apply to various NWT Environments

Processes

- Change Management for strategic direction required
- CM needed between XXa and XXb
- CM needed between XXb and NWT
- Shared Services Needs to be a focal point of new processes

Technology OS and Strategic Approach

RECOMMENDATION

Details on Long, Short, Mixed Strategies

Long Term Strategic Approach

- Benefits
 - Risk Areas Fully Explored and Resolved
 - Long Term Changes to Dev Approach and Choices in Vendor, COTS, etc...
 - Less Dependence on HW Vendor if Linux is Chosen as Long Term Strategic OS Choice
- Risks
 - Short Term Savings Loss
 - Cost Associated with Large Scale Changes
 - Possible Future Limitations on Vendor, COTS

Short Term Strategic Approach

- Benefits
 - Quick Consolidation Savings and Cost Avoidance
 - Immediate Introduction to More Virtualization Practices
 - Wider Areas of Opportunities
- Risks
 - Short Term Savings vs.
 Long Term Savings and Direction
 - Risk Areas Not Fully Identified and Resolved
 - Propagation of Different Virtualization Techniques and Vendors

Mixed Strategic Approach

- Benefits
 - Short Term Cost Savings and Avoidance
 - Wider Areas of Opportunities
 - Long Term Plan for Limited OS Roadmap
- Risks
 - Risk Areas Not Fully Identified and Resolved
 - Short Term Propagation of Different Virtualization Approach
- Possible Long Term Limitation on COTS

OS Migration Targets

	Application D	ependence	SW Functionality Dependence Direction						
	Short Term	Long Term				Short Term		Long Term	
os	Choice	1st Choice	2nd Choice	3rd Choice	SW Function	1 st Choice	2 nd Choice	1 st Choice	2 nd Choice
HP UX	нрих	Solaris	Linux	AIX	Oracle	Linux	НРИХ	Linux	AIX
	HFOX	Joiai is	Liliax	Aix	SQL	Windows		Windows	
Tru64	Tru64	Linux	Solaris	AIX	IIs	Windows		Windows	
OpenVMS	OpenVMS	Solaris	Linux	AIX	DB2	Linux	AIX	Linux	AIX
AIX	AIX	Linux			Websphere	Linux	AIX	Linux	AIX
Solaris	Solaris	Solaris			JBoss	Linux		Linux	
Windows	Mindows)			Weblogic	Linux	AIX	Linux	AIX
Windows	Windows	Windows			Apache	Linux	Solaris	Linux	Solaris
Linux	Linux	Linux							
				-					

HW Type Targets (Long Term)

	Application Classification			
HW Functionality	Bronze or Silver	Gold or Platinum	Cluster Viable	Alternative
Windows Not VM Supported	Intel/AMD	Intel/AMD		
Windows	VM	VM		
Linux Stand Alone	Intel/AMD	Decision →	Yes No	Intel/AMD P Series / P Series Farm
Linux	VM	Decision →	Yes No	Intel/AMD Farm P Series Farm
AIX Stand Alone	P Series	P Series		
AIX	P Series Farm	P Series Farm		
Solaris Stand Alone	SPARC	SPARC		
Solaris	Containers, Domains	Containers, Domains		

This Approach Leaves
XXb in a Long Term
Strategic HW Roadmap
Comprised of SPARC,
Intel/AMD and P Series

Intel/AMD and P Series

Vendor Choice Between HP, IBM, SUN, Dell, Fujitsu

Mixed Strategic Approach

Mixed Strategy Approach

- Leverage Short Term Savings and Cost Avoidance
- Introduction to Long Term Development Changes in Application Choice and Methodology
- Allows Maturity of Other Technologies
- Benefits Security and Network for Long Term Changes in Today's Network Security Guidelines

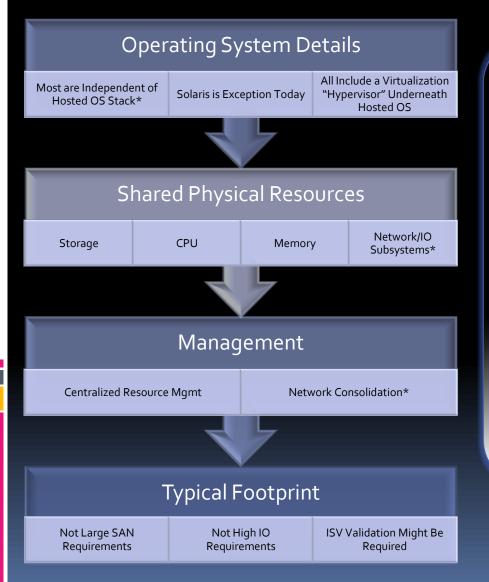
XXb Global Capacity Planning Scope and Reporting Required

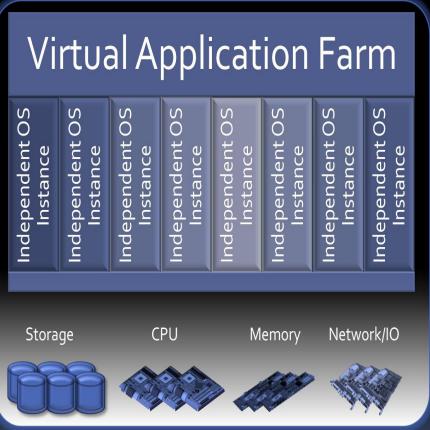
	Performance Analysis	Trending & Reporting	Overall Dashboard
By Segment			
Ву VP			
By OS			
By Functionality			
By Data Center			
By Vendor			
By Application			
Ad-Hoc Request			

Present Requirements for Global Capacity Planning and Reporting to XXa and Evaluate LOE and Cost provided by XXa vs. Cost and LOE Spent on Previous XXb Capacity Planning Project Currently On HOLD Status

Summary of OS and Functionality Roadmaps

- Mixed Strategic Initiative
 - XXb needs a flexible short and long term strategy
 - Strategy needs to be assessed against long and short term savings and technological direction
- Choices OS/Functionality/CP
 - Choice of long term OS between Linux/AIX and Solaris
 - Short term choice should be open to all major vendors
 - Both short and long term strategies need to be founded on a solid capacity planning foundation
 - Requirements need to be communicated to XXa and assessment on previous projects needs to evaluated against LOE to be provided by XXa once requirements are communicated

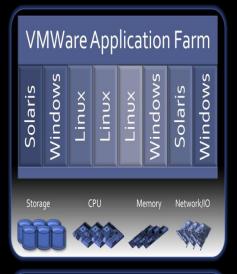

Shared Services (Virtualization & Farming) Concepts and Overall Fabric


RECOMMENDATION

Shared Services and Farming Concepts and Overall Fabric

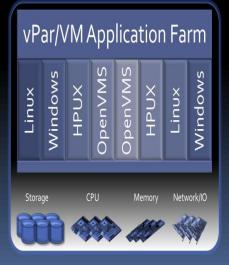
- Next few slides will attempt to communicate the concepts of shared services
 - Functionality Farm
 - Virtualization Farms
 - Risk associated with each farm
 - Benefits of each farm
- Architectural concept of the entire presentation into a XXb Shared Services Framework Fabric and Next Steps
 - How XXb SSFF is constructed from virtualization, farming and process endeavors into a self sustaining fabric
 - Next Steps

Typical Virtualized Host Concepts

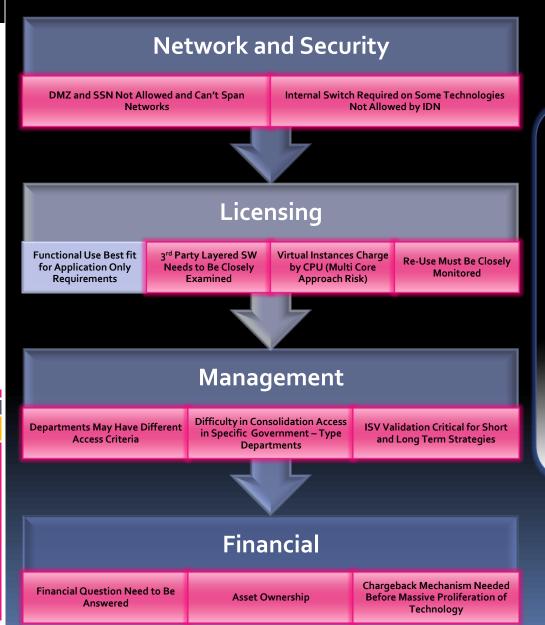

Application Farms - Details

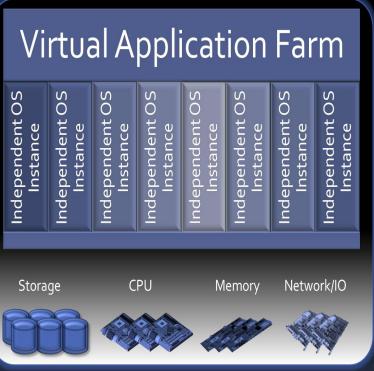
Heterogeneous Virtualization

- Mixed
 Architecture,
 Management
 and Approach
- Tackle More Environments
- More Overhead from Mgmt, Monitoring and Performance Analysis Perspective *


Homogenous Virtualization

- Less Choices
- Possible Long Term Control Gain over Developmental Approach
- Less Overhead from a Mgmt, Monitoring and Performance Analysis Perspective *





Virtualization Risks

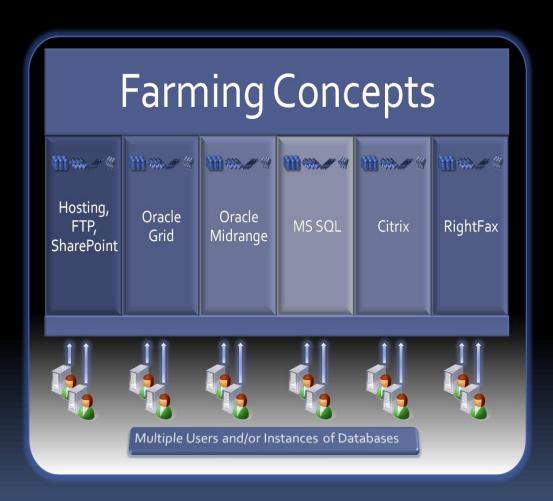
Farming Concepts

Single Instances Share Resources At Instance level

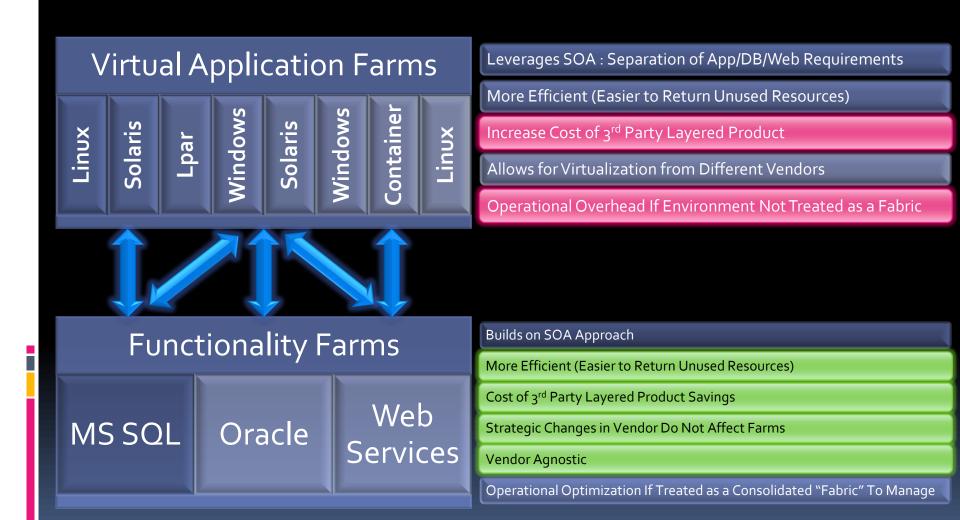
Single OS (Reduce "OS" Sprawl)

Less Maintenance

More Discipline


Savings of Consolidation

Savings from Maintenance


Capacity Planning is Key

Need Financial Model

Network and Security "Friendly"

Farms & Virtualization Fabrics

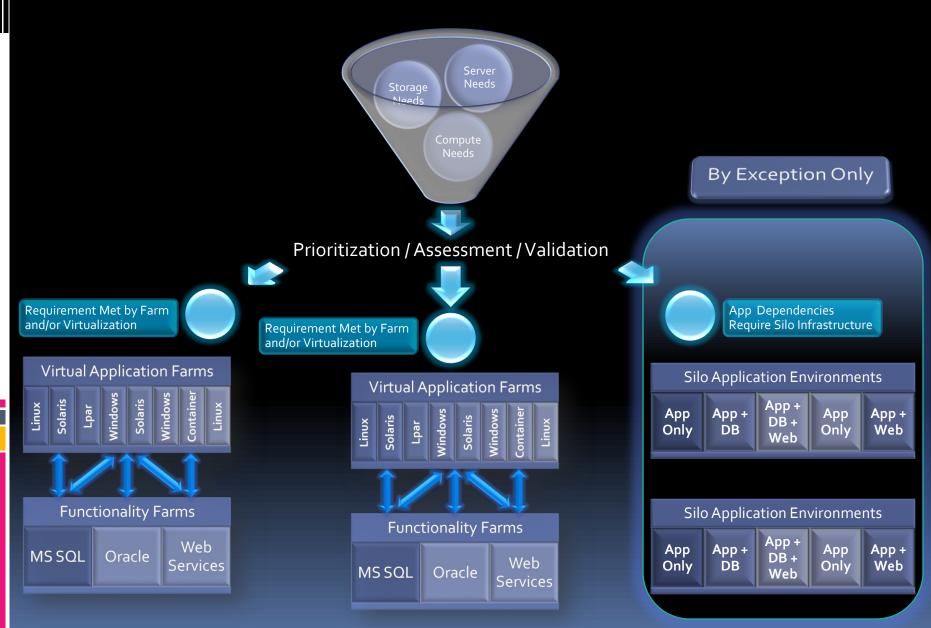
Architectural Concept/Benefits

Common Standards and Processes & Reporting

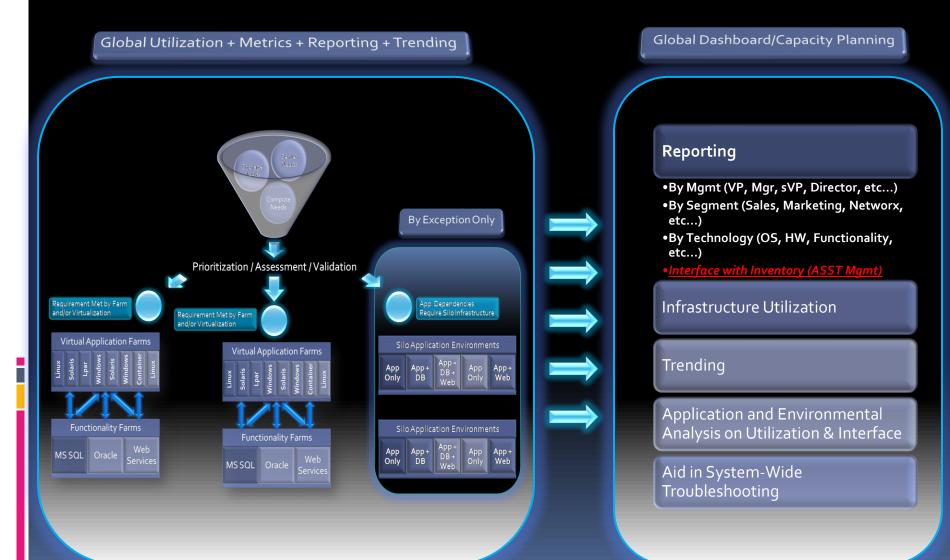
- Centralized Support
- Standard OS/App Level
- Strict Control/Schemas
- OS/SW Discipline
- •OS/SW License Consolidation
- •Resource Sharing

Shared Databases

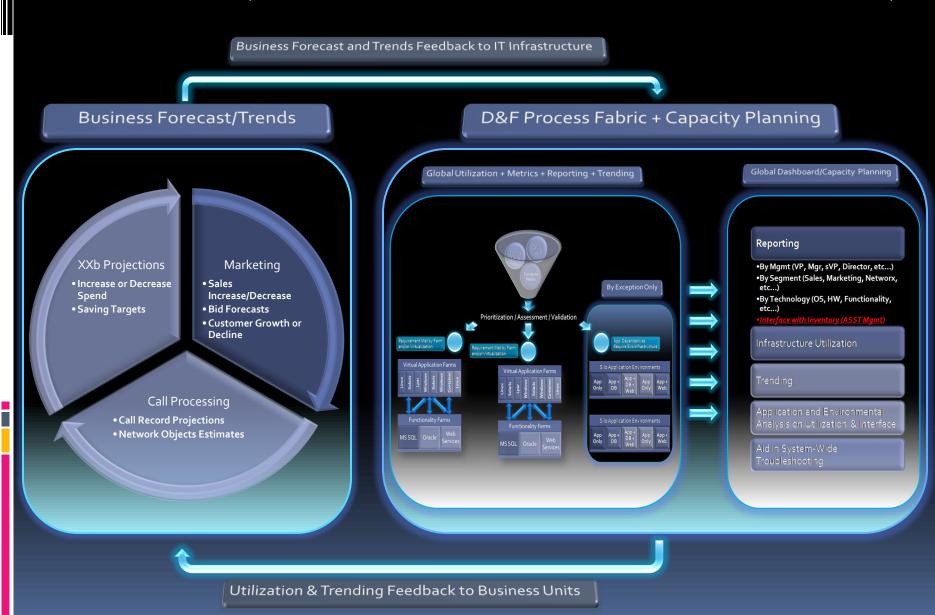
Shared Web Services


- Centralized Support
- Standard OS/App Level
- •Strict Control/Schemas
- OS/SW Discipline
- •OS/SW License Consolidation
- Resource Sharing

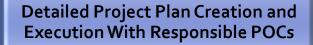
- Centralized Support
- Strict Control/Schemas
- •Containers, IPars, vPars, VMWare
- OS/SW License Proliferation
- Support Overhead
- OS/SW Discipline Difficult


Virtualization Farms

Common Standards and Processes & Reporting


Demand & Fulfillment Process Fabric

D&F Process Fabric + Capacity Planning



XXb SSF (Shared Services Framework)

NEXT STEPS

Next Steps

Detailed Technology Roadmap Creation and Cooperation with XXa

"Bridge" Process POCs Identification

Executive Approval of Direction